|
|
Progress of Low-Field Nuclear Magnetic Resonance Imaging in Extremely Inhomogeneous Magnetic Field |
Miao Zhiying1, Xia Tian2, Wang Hongzhi2*, Ma Junshan1* |
1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China |
|
|
Abstract Conventional MRI (magnetic resonance imaging) equipments are usually bulky, expensive, large noise and difficult to set up, which limits their wide application. Low field mobile MRI devices are expected to solve these disadvantages. In the conventional magnetic resonance imaging, small sample is surrounded by a large magnet and the image is taken in the highly uniform magnetic environment (<5 ppm/40 mm DSV). The hardware design of the conventional magnetic resonance imaging and its corresponding technology are relatively mature and perfect. The open NMR (nuclear magnetic resonance) system is based on extremely inhomogeneous magnetic field conditions (>1000 ppm/mm DSV), and has a wide gap between the traditional hardware design and imaging techniques, and the difficulty is also increased dramatically. This paper reviews the origin, development and key technologies of the low field open magnetic resonance imaging technology, including hardware such as magnet, RF coil, gradient coil and method such as the design of radio frequency pulses, imaging sequence, image post processing. The aim of the review is to provide insights about the research and development of mobile MRI equipment.
|
Received: 10 July 2017
|
|
|
|
|
[1] Coffey AM, Truong ML, Chekmenev EY. Low-field MRI can be more sensitive than high-field MRI [J]. J Magn Reson, 2013(237): 169-174.
[2] Pkk E, Reinikainen H,Lindholm E L, et al. Low-field versus high-field MRI in diagnosing breast disorders [J]. European Radiology, 2005, 15(7): 1361-1368.
[3] Blasiak B, Volotovskyy V, Deng C, et al. A comparison of MR imaging of a mouse model of glioma at 0.2T and 9.4T [J]. Journal of Neuroscience Methods, 2012, 204(1): 118-123.
[4] Taouli B, Zaim S, Peterfy CG, et al. Rheumatoid arthritis of the hand and wrist: comparison of three imaging techniques [J]. American Journal of Roentgenology 2004, 182(4): 937-943.
[5] Savnik A, Malmskov H, Thomsen HS, et al. MRI of the arthritic small joints: comparison of extremity MRI (0.2 T) vs high-field MRI (1.5 T) [J]. European Radiology, 2001, 11(6): 1030-1038.
[6] Jackson JA, Burnett LJ, Harmon JF. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field [J]. J Magn Reson, 1980, 41(3): 411-421.
[7] Eidmann G, Savelsberg R, Blumler P, et al. The NMR MOUSE: A mobile universal surface explorer [J]. J Magn Reson, 1996, 122(1): 104-109.
[8] Prado PJ, Blumich B, Schmitz U. One-dimensional imaging with a palm-size probe [J]. J Magn Reson, 2000, 144(2): 200-206.
[9] Casanova F, Blumich B. Two-dimensional imaging with a single-sided NMR probe [J]. J Magn Reson, 2003, 163(1): 38-45.
[10] Perlo J, Casanova F, Blumich, B. 3D imaging with a single-sided sensor: An open tomograph [J]. J Magn Reson, 2004, 166(2): 228-235.
[11] 车文华. 非常规核磁共振仪器工程实现中主要问题的研究 [D]. 北京: 中国科学院电工研究所,2002.
[12] 张艳丽, 谢德馨, 白保东, 等. 单边磁共振成像仪磁体系统研究 [J]. 波谱学杂志, 2006, 23(3): 283-293.
[13] Yao Yingying, Fang Youtong, Koh CS, et al. A new design method for completely open architecture permanent magnet for MRI [J]. IEEE Transactions on Magnetics, 2005, 41(5): 1504-1507.
[14] 谢俊鹏. 完全开放式核磁共振成像磁体的优化设计 [D]. 杭州: 浙江大学, 2006.
[15] 何为, 何晓龙, 徐征, 等. 单边核磁共振磁体梯度磁场设计的Gram-Schmidt正交化拟合方法 [J]. 重庆大学学报, 2013, 36(1): 86-91.
[16] 徐征, 程江艳, 吴嘉敏, 等. 用于复合绝缘子伞裙老化无损检测的单边核磁共振方法 [J]. 中国电机工程学报, 2014, 34(36): 6545-6553.
[17] 孙新凯, 杨建中, 杨义勇. 应用于单边核磁共振仪器磁体结构的Halbach磁体仿真分析 [J]. 科学技术与工程, 2016, 16(12): 269-273.
[18] Demas V, Meriles C, Sakellariou D, et al. Toward ex situ phase-encoded spectroscopic imaging [J]. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2006, 29B(3): 137-144.
[19] 籍勇亮, 崔现军, 候兴哲, 等. 单边核磁共振传感器研究及其应用 [J]. 波谱学杂志, 2016, 33(1): 66-76.
[20] Komu M, Kormano M. Breast coil design for low-field MRI [J]. Magnetic Resonance in Medicine, 1992, 27(1): 165-170.
[21] Sun Ling, Olsen JO, Robitaille PML. Design and optimization of a breast coil for magnetic resonance imaging [J]. Magn Reso Imag, 1993, 11(1):73-80.
[22] Tomanek B, Volotovskyy V, Tyson R, et al. A quadrature volume rf coil for vertical B0 field open MRI systems [J]. Concepts in Magnetic Resonance Part B, 2016, 46(3): 118-122.
[23] 郭盼. 便携式全开放核磁共振关键技术基础和应用研究 [D]. 重庆: 重庆大学,2014.
[24] Blumich B, Perlo J, Casanova F. Mobile single-sided NMR [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2008, 52(4): 197-269.
[25] 李霞, 谢德馨, 王金铭. 一种全开放磁共振成像装置单平面梯度线圈的新型设计方法 [J]. 中国生物医学工程学报, 2008, 27(3): 422-425,430.
[26] 刘文韬. 临床MRI及便携NMR梯度和匀场线圈设计新方法研究 [D]. 北京: 北京大学,2011.
[27] Mandal S, Utsuzawa S, Cory DG. An ultra-broadband low-frequency magnetic resonance system [J]. J Magn Reson, 2014, 242: 113-125.
[28] Blumich B. Virtual special issue: Magnetic resonance at low fields [J]. J Magn Reson, 2017, 274: 145-147.
[29] 张必达,王卫东,宋枭禹, 等. 磁共振现代射频脉冲理论在非均匀场成像中的应用 [J]. 物理学报, 2003(5): 1143-1150.
[30] 俎栋林,孙春发,赵旭娜,等. 非均匀场磁共振成像仪物理设计要点和应用定位 [J]. 北京大学学报(自然科学版), 2009, 45(3): 377-384.
[31] Garwood M, DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR [J]. J Magn Reson, 2001, 153(2): 155-177.
[32] Pauly J, Le Roux P, Nishimura D, et al. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [J]. IEEE Transactions on Medical Imaging, 1991, 10(1): 53-65.
[33] Rourke DE, Morris PG. The inverse scattering transform and use in the exact inversion of the Bloch equation for noninteracting spins [J]. J Magn Reson, 1992, 99(1): 118-138.
[34] 赵喜平. 磁共振成像系统的原理及其应用 [M]. 北京:科学出版社,2000.
[35] Anferova S, Anferova V, Adams M, et al. Construction of a NMR-MOUSE with short dead time [J]. Concepts in Magnetic Resonance, 2002, 15(1): 15-25.
[36] Prado PJ, Blumich B, Schmitz U. One-dimensional imaging with a palm-size probe [J]. J Magn Reson, 2000, 144(2): 200-206.
[37] Casanova, F, Blumich B. Two-dimensional imaging with a single-sided NMR probe [J]. J Magn Reson, 2003, 163(1): 38-45.
[38] Perlo J, Casanova F, Blumich B. 3Dimaging with a single-sided sensor: an open tomography [J]. J Magn Reson, 2004, 166(2): 228-235.
[39] Hurlimann MD, Griffin DD. Spin dynamics of Carr-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B0 and B1 fields and application to NMR well logging [J]. J Magn Reson, 2000, 143(1): 120-135.
[40] Mandala S, Bornemanb TW, Korolevaa VDM, et al. Direct optimization of signal-to-noise ratio of CPMG-like sequences in inhomogeneous fields [J]. J Magn Reson, 2014, 247: 54-66.
[41] Balibanu F, Hailu K, Eymael R, et al. Nuclear magnetic resonance in inhomogeneous magnetic fields [J]. J Magn Reson, 2000, 145: 246-258.
[42] Casanova F, Perlo J, Blumich B, et al. Multi-echo imaging in highly inhomogeneous magnetic fields [J]. J Magn Reson, 2004, 166(1): 76-81.
[43] Asaf L, Elad B, Yifat S, et al. Faster imaging with a portable unilateral NMR device [J]. J Magn Reson, 2013, 231: 72-78.
[44] Pipe JG. Spatial encoding and reconstruction in MRI with quadratic phase profiles [J]. Magn Reson Med, 1995, 33(1): 24-33.
[45] Pipe JG. Analysis of localized quadratic encoding and reconstruction [J]. Magn Reson Med, 1996, 36(1):137-146.
[46] Meyerand ME, Wong EC. A time encoding method for single-shot imaging [J]. Magn Reson Med, 1995, 34(4): 618-622.
[47] Frydman L, Scherf T, Lupulescu A. The acquisition of multidimensional NMR spectra within a single scan [J]. Proc Natl Acad Sci USA, 2002, 99(25):15858-15862.
[48] Shrot Y, Frydman L. Single-scan NMR spectroscopy at arbitrary dimensions [J]. J Am Chem Soc, 2003, 125(37):11385-11396.
[49] Shapira B, Frydman L. Spatially encoded pulse sequences for the acquisition of high resolution NMR spectra in inhomogeneous fields [J]. J Magn Reson, 2006, 182(1): 12-21.
[50] Shrot Y, Frydman L. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan [J]. J Magn Reson, 2005, 172(2):179-190.
[51] Chamberlain R, Park JY, Corum C, et al. RASER: a new ultrafast magnetic resonance imaging method [J]. Magn Reson Med, 2007, 58(4): 794-799.
[52] Tal A, Frydman L. Spatial encoding and the single-scan acquisition of high definition MR images in inhomogeneous fields [J]. J Magn Reson, 2006, 182: 179-194.
[53] Ben-Eliezer N, Shrot Y, Frydman L. High-definition single-scan 2D MRI in inhomogeneous fields using spatial encoding methods [J]. Magn Reso Imag, 2010, 28: 77-86.
[54] Schmidt R, Mishkovsky M, Hyacinthe JN, et al. Correcting surface coil excitation inhomogeneities in single-shot SPEN MRI [J]. J Magn Reson, 2015, 259: 199-206.
[55] Snyder ALS, Corum CA, Moeller S, et al. MRI by steering resonance through space [J]. Magn Reson Med, 2014, 72(1): 49-58.
[56] Bergman E, Yeredor A, Nevo U. An estimation method of MR signal parameters for improved image reconstruction in unilateral scanner [J]. J Magn Reson, 2013, 237: 92-99.
[57] Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging [J]. Magn Reson Med, 2007, 58(6): 1182-1195.
[58] Parasoglou P, Malioutov D, Sederman AJ. Quantitative single point imaging with compressed sensing [J]. J Magn Reson, 2009, 201(1): 72-80.
[59] 杨冰心. 基于均匀离散曲波变换的高度欠采样快速磁共振成像研究 [D]. 兰州: 兰州大学,2016.
[60] 彭善华. 基于径向轨迹稀疏采样的快速磁共振成像方法研究 [D]. 长沙:湖南师范大学, 2013.
[61] 郑清彬. 分裂增广拉格朗日收缩法在基于压缩感知的磁共振成像中的应用研究 [D]. 济南:山东大学, 2014.
[62] 周爱珍. 基于稀疏采样的医学成像方法研究 [D]. 广州:南方医科大学, 2011.
[63] 翁卓. Sense并行磁共振成像的伪影消除与稀疏采样重建 [D]. 武汉:中南民族大学, 2011.
[64] 陈佳铭. 二维部分K空间数据重建磁共振图像 [D]. 上海:上海交通大学, 2010.
[65] 汪元美, 赵晓东. 非均匀场中磁共振成像问题的研究 [J]. 中国生物医学工程学报, 2002, (2): 161-168.
[66] Nieminen J, Ilmoniemi RJ. Solving the problem of concomitant gradients in ultra-low-field MRI [J]. J Magn Reson, 2010, 207(2): 213-219. |
|
|
|