|
|
The Effect of Cryopreservation on Biospecimens and Biomacromolecules |
Liang Wei1,2, Wang Meixia1, Liu Baolin1* |
1Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China 2Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Shanghai 200092, China |
|
|
Abstract The role of biobanking in modern medical research is becoming more and more important with the endless achievements based on biobanks, which greatly promotes the development of translational medicine. The qualities of the specimens from biobanks have a great effect on the reliability of the researches. So how to guarantee the qualities of the samples is the key of the research on biobanks. Cryopreservation technology can maintain the viability of the specimens, which will play a significant role in the development of biobanks if preserving the complete molecular information and maintaining the viabilities of the specimens. The damage which freezing or cold brings to the specimens (especially to the biological macromolecules of the samples) and how to reduce these damages are reviewed in this article.
|
Received: 25 October 2016
|
|
|
|
|
[1] 乔媛媛,张达矜,熊鸣,等.生物样本库——转化医学的基础[J]. 北京医学, 2013, 35(5): 380-382. [2] Hewitt RE. Biobanking: the foundation of personalized medicine[J]. Current Opinion in Oncology, 2011, 23(1): 112-119. [3] Schmitt S, Kynast K, Schirmacher P, et al. Challenges for quality management in implementation, maintenance, and sustainability of research tissue biobanks[J]. Virchows Archiv, 2016, 468(1): 93-99. [4] 华泽钊,任禾盛. 低温生物医学技术[M].北京:科学出版社, 1994: 1-149. [5] Mazur P, Leibo SP, Chu EHY. A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells[J]. Experimental Cell Research, 1972, 71(2): 345-355. [6] Rabin Y, Taylor MJ, Wolmark N. Thermal expansion measurements of frozen biological tissues at cryogenic temperatures[J]. Journal of Biomechanical Engineering, 1998, 120(2): 259-266. [7] Liu Baolin, Mcgrath JJ. Effects of freezing on the cytoskeleton, focal adhesions and gap-junctionsin murine osteoblast cultures [C] //IEEE International Conference of the Engineering in Medicine & Biology Society. Shanghai: IEEE, 2005: 4896-4899. [8] Von BA, Elsässer A, Ritschl LM, et al. Cryopreservation of endothelial cells in various cryoprotective agents and media-vitrification versus slow freezing methods [J]. PloS ONE, 2016, 11(2): e0149660. [9] Klocke S, Bündgen N, Köster F, et al. Slow-freezing versus vitrification for human ovarian tissue cryopreservation[J]. Archives of Gynecology & Obstetrics, 2015, 291(2): 419-426. [10] Gardner DK, Lane M, Stevens J, et al. Changing the start temperature and cooling rate in a slow-freezing protocol increases human blastocyst viability[J]. Fertility and Sterility, 2003, 79(2): 407-410. [11] Fahy GM, Wowk B. Principles of cryopreservation by vitrification[J]. Methods in Molecular Biology, 2015, 1257: 21-82. [12] Jia Junjun, Zhang Jing, Li Jianhui, et al. Influence of perfusate on liver viability during hypothermic machine perfusion[J]. World Journal of Gastroenterology, 2015, 21(29): 8848-8857. [13] Gubernatis G, Pichlmayr R, Lamesch P, et al. HTK-solution (Bretschneider) for human liver transplantation[J]. Langenbecks Archiv für Chirurgie, 1990, 375(2): 66-70. [14] Stewart ZA. UW Solution: Still the “Gold Standard” for liver transplantation [J]. American Journal of Transplantation, 2015, 15(2): 295-296. [15] Southard JH, Van Gulik TM, Ametani MS, et al. Important components of the UW solution[J]. Transplantation, 1990, 49(2): 251-257. [16] Duret C, Moreno D, Balasiddaiah A, et al. Cold preservation of human adult hepatocytes for liver cell therapy [J]. Cell Transplantation, 2015, 24(12): 2541-2555. [17] Ninagawa T, Eguchi A, Kawamura Y, et al. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera[J]. Cryobiology, 2016, 73(1): 20-29. [18] 陈若平,朱亚忠. 超低温保存胆道组织的实验研究[J]. 上海交通大学学报(医学版), 1998, 2: 141-143. [19] Martínez-Burgos M, Herrero L, Megías D, et al. Vitrification versus slow freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration, and DNA damage[J]. Fertility and Sterility, 2011, 95(1): 374-377. [20] Wolkers WF, Balasubramanian SK, Ongstad EL, et al. Effects of freezing on membranes and proteins in LNCaP prostate tumor cells[J]. Biochimica Et Biophysica Acta, 2007, 1768(3): 728-736. [21] 张佳年,于颖彦,计骏,等. 低温冻存时间对肿瘤组织生物大分子的影响[J]. 诊断学理论与实践, 2009, 8(1): 38-42. [22] 宋博,郑履康,邓丽霞,等. 冰冻对精子DNA的影响[J]. 中华男科学, 2002, 8(4): 253-254. [23] Fairbairn DW, Reyes WA, Van Grigsby R, et al. Laser scanning microscopic analysis of DNA damage in frozen tissues[J]. Cancer Letters, 1994, 76(2): 127-132. [24] Ross KS, Haites NE,Kelly KF. Repeated freezing and thawing of peripheral blood and DNA in suspension: effects on DNA yield and integrity[J]. Journal of Medical Genetics, 1990, 27(9): 569-570. [25] Gliozzi TM, Zaniboni L, Cerolini S. DNA fragmentation in chicken spermatozoa during cryopreservation[J]. Theriogenology, 2011, 75(9): 1613-1622. [26] 路俊锋,陈宏,吴劲松,等. 不同保存方法对脑胶质瘤和其周边组织RNA保存的研究[J]. 中国临床神经科学, 2010, 18(2): 199-202. [27] Olivieri EH, Franco LA, Pereira RG, et al. Biobanking practice: RNA storage at low concentration affects integrity[J]. Biopreservation & Biobanking, 2014, 12(1): 46-52. [28] Botling JEK, Segersten U. Impact of thawing on RNA integrity and gene expression analysis in fresh frozen tissue[J]. Diagnostic Molecular Pathology, 2009, 18: 44-52. [29] Terry C, Hughes RD, Mitry RR, et al. Cryopreservation-induced nonattachment of human hepatocytes: role of adhesion molecules[J]. Cell Transplantation, 2007,16(6): 639-647. [30] Riesco MF Robles V. Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges[J]. PLoS ONE, 2013, 8(6): e67614. [31] Karimi-Busheri F, Zadorozhny V, Carrier E, et al. Molecular integrity and global gene expression of breast and lung cancer stem cells under long-term storage and recovery[J]. Cell and Tissue Banking, 2013, 14(2): 175-186. [32] Rouy D, Ernens I, Jeanty C, et al. Plasma storage at -80℃ does not protect matrix metalloproteinase-9 from degradation[J]. Analytical Biochemistry, 2005, 338(2): 294-298. [33] 王尚乾. 人类精子冷冻复苏后乌头酸水合酶的表达变化及其致损伤机制研究 [D]. 南京: 南京医科大学,2014. [34] Wolkers WF, Crowe LM, Tsvetkova NM, et al. In situ assessment of erythrocyte membrane properties during cold storage[J]. Molecular Membrane Biology, 2002, 19(1): 59-65. [35] Mazur P, Cole KW. Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes[J]. Cryobiology, 1989, 26(1): 1-29. [36] Bischof JC, Wolkers WF, Tsvetkova NM, et al. Lipid and protein changes due to freezing in Dunning AT-1 cells[J]. Cryobiology, 2002, 45(1): 22-32. [37] Hubel A, Spindler R, and Skubitz APN. Storage of human biospecimens: selection of the optimal storage temperature[J]. Biopreservation &Biobanking, 2014, 12(3): 165-175. [38] 侯文华,王宁,肖传宇. 保存温度及时间对血清游离脂肪酸检测的影响[J]. 医学信息, 2016, 29(18). [39] Sieme H, Oldenhof H, Wolkers WF. Sperm membrane behaviour during cooling and cryopreservation[J]. Reproduction in Domestic Animals, 2015, 50(S3): 20-26. [40] Brouwers JFHM, Gadella BM. In situ detection and localization of lipid peroxidation in individual bovine sperm cells[J]. Free Radical Biology and Medicine, 2003, 35(11): 1382-1391. [41] Sarözkan S, Bucak MN, Canturk F, et al. The effects of different sugars on motility, morphology and DNA damage during the liquid storage of rat epididymal sperm at 4℃ [J]. Cryobiology, 2012, 65(2): 93-97. [42] Buchanan SS, Gross SA, Acker JP, et al. Cryopreservation of Stem Cells Using Trehalose: Evaluation of the Method Using a Human Hematopoietic Cell Line [J]. Stem Cells and Development, 2004, 13(3): 295-305. [43] Yamaguchi R, Andreyev A, Murphy AN, et al. Mitochondria frozen with trehalose retain a number of biological functions and preserve outer membrane integrity[J]. Cell Death & Differentiation, 2007, 14(3): 616-624. [44] Moore DS and Hand SC. Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose[J]. Cryobiology, 2016, 73(2): 240-247. [45] Branco CS, Garcez ME, Pasqualotto FF, et al. Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen[J]. Cryobiology, 2010, 60(2): 235-237. [46] Kalthur G, Raj S, Thiyagarajan A, et al. Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw-induced DNA damage[J]. Fertility and Sterility, 2011, 95(3): 1149-1151. [47] Chong YK, Toh TB, Zaiden N, et al. Cryopreservation of neurospheres derived from human glioblastoma multiforme[J]. Stem Cells, 2009, 27(1): 29-39. [48] Less R, Boylan KLM, Skubitz APN, et al. Isothermal vitrification methodology development for non-cryogenic storage of archival human sera[J]. Cryobiology, 2013,66(2): 176-185. [49] Solivio MJ, Less R, Rynes ML, et al. Adsorbing/dissolving lyoprotectant matrix technology for non-cryogenicstorage of archival human sera[J]. Scientific Reports, 2016, 6: 24186. [50] Condelli V, Lettini G, Patitucci G, et al. Validation of vacuum-based refrigerated system for biobanking tissue preservation: analysis of cellular morphology, protein stability, and RNA quality[J]. Biopreservation & Biobanking, 2014, 12(1): 35-45. |
[1] |
Li Xue, Zhang Weiwei. Non-Invasive Measurement of Auricular Cartilage in vivo by UTE T2* Mapping[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 271-279. |
[2] |
Li Baoming, Hu Jiarui, Xu Haijun, Wang Cong, Jiang Yanni, Zhang Zhihong, Xu Jun. Deep Cascaded Network for Automated Detection of Cancer MetastasisRegion from Whole Slide Image of Breast Lymph Node[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 257-264. |
|
|
|
|