|
|
The Survey of EEG Fingerprints Identification |
Wang Luyun, Kong Wanzeng*, Zhang Xinyu, Fan Qiaonan |
School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract Personal identification is particularly important in information security. The traditional way of identification is not sufficient in terms of security. As a new type of biometrics, electroencephalogram(EEG) signals has unique advantages of unstolenness, unforgeability and in vivo detection. It provides a more secure biometric method for identification. Therefore, EEG fingerprints is promising both in terms of scientific research and real-world application. In this paper, the state of art of the identification technologies based on EEG signals are reviewed. It also introduces the principles and methods of EEG fingerprints identification with regarding to resting state, visual evoked potential (VEP), motor imagery and event-related potential (ERP). Meanwhile, both advantages and limitations of these methods are discussed. Finally, research direction is summarized.
|
Received: 10 March 2017
|
|
|
|
|
[1] Beranek B. Voice biometrics: success stories, success factors and what′s next[J]. Biometric Technol Today, 2013, 2013(7): 9-11. [2] Ramon M, Vizioli L, Liushuang J, et al. Neural microgenesis of personally familiar face recognition[J]. Proc Nati Acad Sci, 2015, 112(35): 4835-4844. [3] Marsico MD, Petrosino A, Ricciardi S. Iris Recognition through Machine Learning Techniques: a Survey[J]. Pattern Recogn Lett, 2016, 82:106-115. [4] Goodwin WH, Simmons T. Disaster Victim Identification[J]. Encycl Foren Sci, 2013, 23(2): 332-338. [5] Soweon Y, Jain AK. Longitudinal study of fingerprint recognition[J]. Proc Nati Acad Sci, 2015, 112(28): 8555-8560. [6] Malathy C, Sadiq AK, Annapurani K. An innovative approach for person identification by detection andextraction of optic disc from retina and concha from ear[J]. J Comput Sci, 2015, 11(1): 153-165. [7] Hong Danfeng, Liu Wanquan, Su Jian, et al. A novel hierarchical approach for multispectral palmprint recognition[J]. Neurocomputing, 2015, 151: 511-521. [8] Jain AK, Flynn P, Ross A. Handbook of Biometrics[M]. Berlin: Springer, 2007. [9] 李鹏宇. 基于脑电信号的身份认证[D]. 北京: 北京邮电大学, 2015. [10] Brunelli R, Poggio T. Face recognition: Features versus templates[J]. IEEE Trans Pattern Anal Mach Intell, 1993, 15(10):1042-1052. [11] Piotrowski Z, Gajewski P. Voice spoofing as an impersonation attack and the way of protection[J]. J Inform Assur Secur, 2007, 2(3): 223-225. [12] Lee SJ, Kang RP, Kim J. Robust Fake Iris Detection Based on Variation of the Reflectance Ratio Between the IRIS and the Sclera[C] //2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference. Baltimore: IEEE, 2006: 1-6. [13] Armstrong BC, Ruiz-Blondet MV, Khalifian N, et al. Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics[J]. Neurocomputing, 2015, 166: 59-67. [14] Paranjape RB, Mahovsky J, Benedicenti L, et al. The electroencephalogram as a biometric[C] //2001 Canadian Conference on Electrical and Computer Engineering(CCECE). Toronto: IEEE, 2001, 2: 1363-1366. [15] Das K, Zhang S, Giesbrecht B, et al. Using rapid visually evoked EEG activity for person identification[C] //International Conference of the IEEE Engineering in Medicine and Biology Society(EMBS). Minneapolis: IEEE, 2009: 2490-2493. [16] Marcel S, Millan JR. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation[J]. IEEE Trans Pattern Anal mach intell, 2007, 29(4): 743-752. [17] Yeom SK, Suk HI, Lee SW. Person authentication from neural activity of face-specific visual self-representation[J]. Pattern Recogn, 2013,46(4): 1159-1169. [18] 夏立文. 基于脑电波信号的身份识别技术[D]. 北京: 北京邮电大学, 2011. [19] 郑德高. 神经元和神经网络模型[J]. 科学, 1992(6): 34-36. [20] 夏阳, 尧德中. 神经信息学基础[M]. 成都: 电子科技大学出版社, 2015: 79-80. [21] 尧德中. 脑信息科学:概念、内容与挑战[J]. 中国生物医学工程学报, 2016, 35(2): 129-132. [22] 林伟成. 基于EEG信号的认知任务模式分类研究[D]. 杭州: 杭州电子科技大学, 2013. [23] Sanei S, Chambers JA. EEG signal processing[M]//The Fernow Watershed Acidification Study. Netherlands: Springer, 2007:207-236. [24] Palaniappan R, Mandic DP. Biometrics from brain electrical activity: a machine learning approach[J]. IEEE Trans Pattern Anal Mach Intell, 2007, 29(4): 738-742. [25] Thorpe J, Van Oorschot PC, Somayaji A. Pass-thoughts: authenticating with our minds[J]. Proc New Secur Parad Arrow, 2005, 2005: 45-56. [26] Palaniappan R, Ravi KVR. Improving visual evoked potential feature classification for person recognition using PCA and normalization[J]. Pattern Recogn Lett, 2006, 27(7):726-733. [27] 卫生部脑死亡判定标准起草小组. 脑死亡判定标准(成人)[J]. 现代实用医学, 2004, 16(4): 241-241. [28] Shedeed HA. A new method for person identification in a biometric security system based on brain EEG signal processing[C] //2011 5th International Conference on Application of Information and Communication Technologies(AICT). Baku: IEEE, 2011: 1205-1210. [29] Mohammadi G, Shoushtari P, Molaee-Ardekani B, et al. Person identification by using AR model for EEG signals[J]. Enformatika, 2006, 11: 281-285. [30] Abdullah MK, Subari KS, Loong JLC, et al. Analysis of the EEG signal for a practical biometric system[J]. World Acad Sci Eng Technol, 2010(68): 364-368. [31] 杨剑, 陈书燊, 皇甫浩然,等. 静息态脑电信号动态功能连接分析[J]. 物理学报, 2015, 64(5): 374-383. [32] 李珈含, 王欣, 成立立,等. 不同动机特质在静息态下脑功能的相关研究[J]. 国际医学放射学杂志, 2016, 39(5): 468-472. [33] 刘泉影. 普适环境下基于静息态脑电的身份识别研究[D]. 兰州: 兰州大学, 2013. [34] Maiorana E, Rocca DL, Campisi P. EigenBrains and EigenTensorBrains: Parsimonious bases for EEG biometrics[J]. Neurocomputing, 2016, 171: 638-648. [35] Bose T, Sivakumar SD, Kesavamurthy B. Identification of schizophrenia using EEG alpha band power during hyperventilation and post-hyperventilation[J]. J Med Biol Eng, 2016: 1-11. [36] 何庆华. 基于视觉诱发电位的脑机接口实验研究[D]. 重庆: 重庆大学,2003. [37] Palaniappan R, Mandic DP. Biometrics from brain electrical activity: A machine learning approach[J]. IEEE Trans Pattern Anal Mach Intell, 2007, 29(4): 738-742. [38] Das R, Piciucco E, Maiorana E, et al. Visually evoked potentials for EEG biometrie recognition[C] //2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines(SPLINE). New York: IEEE, 2016: 1-5. [39] Gui Qiong, Jin Zhanpeng, Xu Wenyao. Exploring EEG-based biometrics for user identification and authentication[C] //The IEEE Signal Processing in Medicine and Biology Symposium (SPMB). Philadelphia: IEEE, 2015: 1-6. [40] Wan Baikun, Liu Yangang, Ming Ding, et al. Feature recognition of multi-class imaginary movements in brain-computer interface[C] //IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems(VECIMS). Hong Kong: IEEE, 2009: 250-254. [41] Pfurtscheller G, Fh LDS. Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clin Neurophysiol, 1999, 110(11): 1842-1857. [42] 胡剑锋,包学才. 基于EEG信号的身份识别方法[J]. 中国组织工程研究与临床康复, 2009, 13(17): 3260-3264. [43] 胡剑锋, 包学才. 基于脑电密码的新型生物识别方法[J]. 中国组织工程研究与临床康复, 2010(43): 8081-8085. [44] Steven J. An Introduction to the Event-Related Potential Technique[M]. London: The MIT Press, 2005: 1-35. [45] 明东. 用于脑机接口的感觉刺激事件相关电位研究进展[J]. 电子测量与仪器学报, 2009, 23(6): 1-6. [46] Ruiz-Blondet M, Khalifian N, Armstrong BC, et al. Brainprint: Identifying unique features of neural activity with machine learning[C] //The 36th Annual Conference of the Cognitive Science Society. Quebec: Phil Papers, 2014: 827-832. [47] Krusienski DJ, Sellers EW, Cabestaing F, et al. A comparison of classification techniques for the P300 Speller[J]. J Neural Eng, 2006, 3(4):299-305. [48] 刘晶, 白艳茹, 许敏鹏, 等. 基于Farwell范式诱发ERP的身份识别研究[J]. 电子测量与仪器学报, 2015(2): 221-226. [49] 官金安, 高炜, 周到, 等. 非监督特征学习方法在脑电身份识别中的应用[J]. 中南民族大学学报(自然科学版), 2014(4): 85-89. [50] Touyama H, Hirose M. Non-target photo images in oddball paradigm improve EEG-based personal identification rates[C]//International Conference of the IEEE Engineering in Medicine and Biology Society(EMBS). Vancouver: IEEE, 2008: 4118-4121. [51] Xiao Dan, Hu Jianfeng. Identification of motor imagery EEG signal[J]. Comput Eng Appl, 2010:1-4. [52] Dai Yixiang, Wang Xue, Li Xuanping, et al. Sparse EEG compressive sensing for web-enabled person identification[J]. Measurement, 2015, 74: 11-20. [53] Brunori M, Colosimo A, Wilson MT. EEG signal processing[J]. Comput Intel Neurosci, 2007, 2007(2):1178-1181. [54] Maiorana E, Rocca DL, Campisi P. On the permanence of EEG signals for biometric recognition[J]. IEEE Trans Inform Forensics Secur, 2016, 11(1): 163-175. |
[1] |
Liu Xiaoya, Liu Shuang, Guo Dongyue, An Xingwei, Yang Jiajia, Ming Dong. Research Progress in Electroencephalography of Depression[J]. Chinese Journal of Biomedical Engineering, 2020, 39(3): 351-361. |
[2] |
Huang Yihao, Chen Yuqian, Qi Hongzhi. Research on Adaptive Antagonism Method of ERP-BCI Under Parallel Task Interference[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 137-144. |
|
|
|
|