|
|
The Analysis of the Systemic Circulation of Human Blood Based on Fluid Network |
Xu Ke, Zhao Liangju*, Li Mingyang |
Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing 400030, China |
|
|
Abstract Hemodynamic parameters will be studied under the changes of different organs flow resistances, based on the principles of traditional Chinese medicine pulse diagnosis. A fluid network model of systemic circulation of human blood is established. Utilizing a 10 times harmonic hemodynamics expression of cardiac output and the average method of adaptive control, the model is solved when η is respectively set to 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. With the cardiac index keeping constant, the results show that the average flow rate decreases with the increase of flow resistance of corresponding branch. The aortic mean pressure increases with the rise of flow resistance of organ branch. When η is setted to 3.0, the aortic mean pressure increases 23.29%, 16.42%, 14.67%, 9.69%, 9.59% and 7.82% higher than normal by the flow resistance increase of brain, liver, kidney, stomach, intestine and spleen branch respectively. The flow resistance of liver and kidney branch has the great effect on the radial artery mean pressure, which respectively increases 22.85% and 11.17% when η is setted to 3.0. While the other organ branches have less influence. For the harmonic amplitude of the radial artery pressure, the biggest affecting factor is the brain branch flow. The liver and kidney branch have less influence than the brain. The stomach, intestine and spleen branch have little impact on it. In this paper, we have found the relationships between the hemodynamic parameters and the changes of different organs flow resistances by the simulation method, and it can provide some theoretical basis for traditional Chinese medicine pulse diagnosis.
|
Received: 17 August 2016
|
|
|
|
|
[1] Mcleod J. PHYSBE. A physiological simulation benchmark experiment [J]. Simulation Transactions of the Society for Modeling & Simulation International, 1966, 7(6): 324-329. [2] Rideout VC. Mathematical and computer modeling of physiological systems [M].New Jersey: Prentice-Hall Inc, 1991: 1-65. [3] Alessandro S, Mauro U. Mathematical modeling of cardiovascular coupling: Central autonomic commands and baroreflex control [J]. Autonomic Neuroscience, 2011, 162(1-2): 66-71. [4] Goldberger AL, Amaral L, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals [J]. Circulation, 2000, 101(23): 215-220. [5] 郑泰胜. 冠状与系统循环血动力学关系的模型研究 [J]. 中国生物医学工程学报, 1997, 16(2): 108-114. [6] 樊瑜波, 陈君楷. 含动脉分支的体循环模拟实验系统 [J]. 实验力学, 1995, 10(1): 1-10. [7] 王怀阳, 郑振声, 吴晓明, 等. 灌注压对左心室壁心肌层间血流影响的建模与仿真研究 [J]. 医用生物力学, 2000, 15(3): 152-156. [8] 郝卫亚, 李为慧, 白净. 左心室心肌局部缺血的生物力学模型及计算机仿真研究 [J]. 航天医学与医学工程, 2001, 14(5): 350-354. [9] 李新胜, 白净, 崔树起, 等. 心肺交互作用的心血管系统模型及仿真研究 [J]. 中国生物医学工程学报, 2003, 22(3): 241-249. [10] Hillen B, George F. Analysis of flow and vascular resistance in a model of the circle of Willis [J]. Journal of Biomechanics, 1988, 21(10): 807-814. [11] Zhao Liangju. Acupuncture meridian of traditional Chinese medical science: An auxiliary respiratory system [J]. Journal of Acupuncture & Meridian Studies, 2015, 8(4): 209-212. [12] 刘剑, 贾进章, 郑丹. 流体网络理论 [M]. 北京: 煤炭工业出版社, 2002: 1-185. [13] 丁光宏, 覃开荣, 高健, 等. 脑循环血液动力学研究:Willis环定常流力学模型 [J]. 中国生物医学工程学报, 1998, 17(1): 88-95. [14] 陆健敏, 陈惠中,叶抗生. 袖珍常用医学数据手册 [M]. 北京: 金盾出版社, 1996: 15-25. [15] 唐元升, 张秀珍, 等. 人体医学参数与概念 [M]. 济南:济南出版社, 1995: 63-78. [16] 张修诚, 王唯工, 陈荣洲, 韩殿存. 脉搏谐波频谱分析——中医脉诊研究新方法 [J]. 中国中西医结合杂志, 1995(12): 743-745. [17] Hu Y, Koroleva OI, Krstic′ M. Nonlinear control of mine ventilation networks [J]. Systems & Control Letters, 2003,49(4): 239-254. [18] 隋金雪, 杨莉. 复杂流体网络分析与控制 [M]. 北京: 电子工业出版社, 2013: 69-109. [19] 韩曾晋. 自适应控制 [M]. 北京: 清华大学出版社, 1995:171-192. [20] 李同宪, 李月彩. 中西医融合观续——气血津液与内环境的融合 [M]. 西安: 第四军医大学出版社, 2012: 71-78. [21] Takayama S, Seki T, Watanabe M,et al. Brief effect of acupuncture on the peripheral arterial system of the upper limb and systemic hemodynamics in humans [J]. Journal of Alternative & Complementary Medicine, 2010, 16(16): 707-713. [22] Shirai A, Suzuki T, Seki T. Numerical reproduction of hemodynamics change by acupuncture on Taichong (LR-3) based on the lumped-parameter approximation model of the systemic arteries [J]. Integrative Medicine Research, 2015, 11(3): 161-170. |
|
|
|