Progress in the Preparation of Fluorescence-Encoded Microspheres
Li Yan1, Luo Cheng1*, Wu Daocheng2
1 (School of Medicine, Yichun University, Yichun 336000,Jiangxi, China) 2(Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China)
Abstract Suspension array is a promising platform for multiplex analyses with broad applications in science research and clinical diagnosis. As one of the key components for the suspension array, fluorescence-encoded microspheres have received much attention and a lot of achievements have been made. In this review, the analysis pattern and applications of suspension array were introduced, and recent advances in the fluorescence-encoded microspheres were summarized according to the classification of preparationmethods including swelling method, layer-by-layer (LBL) self-assembly, embedding in microspheres, microfluidic techniques and membrane emulsification. Current challenges and future directions of fluorescence-encoded microspheres were also outlined.
Li Yan,Luo Cheng,Wu Daocheng. Progress in the Preparation of Fluorescence-Encoded Microspheres[J]. Chinese Journal of Biomedical Engineering, 2017, 36(2): 219-227.
[1] Nolan JP, Sklar LA. Suspension array technology: evolution of the flat-array paradigm[J]. Trends Biotechnol, 2002, 20 (1): 9-12. [2] Nolan JP, Mandy F. Multiplexed and microparticle-based analyses: Quantitative tools for the large-scale analysis of biological systems[J]. Cytom Part A, 2006, 69A (5): 318-325. [3] Wilson R, Cossins AR, Spiller DG. Encoded microcarriers for high-throughput multiplexed detection[J]. Angew Chem Int Edit, 2006, 45 (37): 6104-6117. [4] 张鑫, 赵鹏翔, 吕宝北, 等. 悬浮芯片系统的结构组成及应用进展[J]. 北京工业大学学报, 2015, 41(12): 1810-1816. [5] 程涛, 王慧煜, 梅琳, 等. 悬浮芯片技术应用进展[J]. 生物技术通报, 2011(9): 48-51. [6] 朱鹏, 张青雯, 祁芝珍, 等. 基于Luminex悬浮芯片的鼠疫耶尔森菌SNP分型方法研究[J]. 军事医学, 2012, 36(7): 502-507. [7] Sun Zhiyong, Peng Yuan, Zhang Manci, et al. Simultaneous and highly sensitive detection of six different foodborne pathogens by high-throughput suspension array technology [J]. Food Control, 2014, 40: 300-309. [8] Nolen BM, Lomakin A, Marrangoni A, et al. Urinary protein biomarkers in the early detection of lung cancer [J]. Cancer Prev Res, 2015, 8 (2):111-119. [9] Tong Weihua, Ye Fei, He Liang, et al. Serum biomarker panels for diagnosis of gastric cancer [J]. Onco Targets Ther, 2016, 9: 2455-2463. [10] Birtwell SW,Morgan H. Microparticle encoding technologies for high-throughput multiplexed suspension assays[J]. Integr Biol, 2009, 1 (5-6): 345-362. [11] Braeckmans K, De Smedt SC, Leblans M, et al. Encoding microcarriers: present and future technologies[J]. Nat Rev Drug Discov, 2002, 1 (6): 447-456. [12] Leng Yuankui, Sun Kang, Chen Xiaoyuan, et al. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection[J]. Chem Soc Rev, 2015, 44 (15): 5552-5595. [13] Han Mingyong, Gao Xiaohu, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotech, 2001, 19 (7): 631-635. [14] Zhang Fan, Shi Qihui, Zhang Yichi, et al. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding[J]. Adv Mater, 2011, 23 (33): 3775-3779. [15] Wang Gang, Zhang Pengfei, Dou Hongjing, et al. Efficient incorporation of quantum dots into porous microspheres through a solvent-evaporation approach[J]. Langmuir, 2012, 28 (14): 6141-6150. [16] Song Tao, Zhang Qi, Lu Chaoliang, et al. Structural design and preparation of high-performance QD-encoded polymer beads for suspension arrays[J]. J Mater Chem, 2011, 21 (7): 2169-2177. [17] Song Tao, Liu Junqing, Li Wenbin, et al. Self-healing encapsulation strategy for preparing highly stable, functionalized quantum-dot barcodes[J]. ACS Appl Mater Interfaces, 2014, 6 (4): 2745-2752. [18] Gao Xiaohu, Nie Shuming. Doping mesoporous materials with multicolor quantum dots[J]. J Phys Chem, 2003, 107 (42): 11575-11578. [19] Gao Xiaohu, Nie Shuming. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry[J]. Anal Chem, 2004, 76 (8): 2406-2410. [20] Hu Shanghsiu, Gao Xiaohu. Stable encapsulation of quantum dot barcodes with silica shells[J]. Adv Funct Mater, 2010, 20 (21): 3721-3726. [21] Wang Dayang, Rogach AL, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly[J]. Nano Lett, 2002, 2 (8): 857-861. [22] Sukhanova A, Susha AS, Bek A, et al. Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases[J]. Nano Lett, 2007, 7 (8): 2322-2327. [23] Allen CN, Lequeux N, Chassenieux C, et al. Optical analysis of beads encoded with quantum dots coated with a cationic polymer[J]. Adv Mater, 2007, 19 (24): 4420-4425. [24] Schnackel A, Hiller S, Reibetanz U, et al. Fluorescent bead arrays by means of layer-by-layer polyelectrolyte adsorption[J]. Soft Matter, 2007, 3 (2): 200-206. [25] Nanthakumar A, Pon RT, Mazumder A, et al. Solid-phase oligonucleotide synthesis and flow cytometric analysis with microspheres encoded with covalently attached fluorophores[J]. Bioconjugate Chem, 2000, 11 (2): 282-288. [26] Kozak D, Kithva P, Bax J, et al. Development of encoded particle-polymer arrays for the accelerated screening of antifouling layers[J]. Chem Commun, 2011, 47 (34): 9687-9689. [27] Zhang Zhiling, Long Yao, Pan Jianbo, et al. Preparation of fluorescence-encoded microspheres in a core-shell structure for suspension arrays[J]. J Mater Chem, 2010, 20 (6): 1179-1185. [28] Liu Qinghao, Liu Jia, Guo Jinchun, et al. Preparation of polystyrene fluorescent microspheres based on some fluorescent labels[J]. J Mater Chem, 2009, 19 (14): 2018-2025. [29] Wu Youshen, Li Yan, Xu Jianhua, et al. Incorporating fluorescent dyes into monodisperse melamine-formaldehyde resin microspheres via an organic sol-gel process: a pre-polymer doping strategy[J]. J Mater Chem B, 2014, 2 (35): 5837-5846. [30] Vaidya SV, Gilchrist ML, Maldarelli C, et al. Spectral bar coding of polystyrene microbeads using multicolored quantum dots[J]. Anal Chem, 2007, 79 (22): 8520-8530. [31] Yang Yunhua, Wen Zhongkai, Dong Yuping, et al. Incorporating CdTe nanocrystals into polystyrene microspheres: towards robust fluorescent beads[J]. Small, 2006, 2 (7): 898-901. [32] Chan Y, Zimmer JP, Stroh M, et al. Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres[J]. Adv Mater, 2004, 16 (23-24): 2092-2097. [33] Graf C, Dembski S, Hofmann A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J]. Langmuir, 2006, 22 (13): 5604-5610. [34] Kuang Min, Wang Dayang, Bao Haobo, et al. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres[J]. Adv Mater, 2005, 17 (3): 267-270. [35] Gong Yanjun, Gao Mingyuan, Wang Dayang, et al. Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: toward fluorescent microspheres with temperature-responsive properties[J]. Chem Mater, 2005, 17 (10): 2648-2653. [36] Wang Xiebing, Wang Gang, Li Wanwan, et al. NIR-emitting quantum dot-encoded microbeads through membrane emulsification for multiplexed immunoassays[J]. Small, 2013, 9 (19): 3327-3335. [37] Sun Xiaoting, Liu Mei, Xu Zhangrun. Microfluidic fabrication of multifunctional particles and their analytical applications[J]. Talanta, 2014, 121: 163-177. [38] Gerver RE, Gomez-Sjoberg R, Baxter BC, et al. Programmable microfluidic synthesis of spectrally encoded microspheres[J]. Lab Chip, 2012, 12 (22): 4716-4723. [39] Fournier-Bidoz S, Jennings TL, Klostranec JM, et al. Facile and rapid one-step mass preparation of quantum-dot barcodes[J]. Angew Chem Int Edit, 2008, 47 (30): 5577-5581. [40] Ji Xinghu, Zhang Nangang, Cheng Wei, et al. Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes[J]. J Mater Chem, 2011, 21 (35): 13380-13387. [41] Chen Yang, Dong Pengfei, Xu Jianhong, et al. Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability[J]. Langmuir, 2014, 30 (28): 8538-8542. [42] Cunin F, Schmedake TA, Link JR, et al. Biomolecular screening with encoded porous-silicon photonic crystals[J]. Nat Mater, 2002, 1 (1): 39-41. [43] Zhao Yuanjin, Zhao Xiangwei, Hu Jing, et al. Encoded porous beads for label-free multiplex detection of tumor markers[J]. Adv Mater, 2009, 21 (5): 569-572. [44] Ye Baofen, Ding Haibo, Cheng Yao, et al. Photonic crystal microcapsules for label-free multiplex detection[J]. Adv Mater, 2014, 26 (20): 3270-3274. [45] Li Juan, Zhao Xiangwei, Zhao Yuanjin, et al. Quantum-dot-coated encoded silica colloidal crystals beads for multiplex coding[J]. Chem Commun, 2009, 17 (17): 2329-2331. [46] Li Juan, Zhao Xiangwei, Zhao YuanJin, et al. Colloidal crystal beads coated with multicolor CdTe quantum dots: microcarriers for optical encoding and fluorescence enhancement[J]. J Mater Chem, 2009, 19 (36): 6492-6497. [47] Chen Chi, Zhang Pengfei, Gao Guanhui, et al. Near-infrared-emitting two-dimensional codes based on lattice-strained core/(doped) shell quantum dots with long fluorescence lifetime[J]. Adv Mater, 2014, 26 (36): 6313-6317. [48] Wang Gang, Leng Yuankui, Dou Hongjing, et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis b detection[J]. ACSNano, 2013, 7 (1): 471-481. [49] Li Yunhong, Song Tao, Liu Junqing, et al. An efficient method for preparing high-performance multifunctional polymer beads simultaneously incorporated with magnetic nanoparticles and quantum dots[J]. J Mater Chem, 2011, 21 (33): 12520-12528. [50] Sathe TR, Agrawal A, Nie Shuming. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation[J]. AnalChem, 2006, 78 (16): 5627-5632. [51] Wilson R, Spiller DG, Prior IA, et al. Magnetic microspheres encoded with photoluminescent quantum dots for multiplexed detection[J]. J Mater Chem, 2007, 17 (41): 4400-4406. [52] Wilson R, Spiller DG, Prior IA, et al. A simple method for preparing spectrally encoded magnetic beads for multiplexed detection[J]. ACS Nano, 2007, 1 (5): 487-493. [53] Insin N, Tracy JB, Lee H, et al. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres[J]. ACS Nano, 2008, 2 (2): 197-202. [54] Li Yan, Wu Youshen, Luo Cheng, et al. Rewritable magnetic fluorescence-encoded microspheres: preparation, characterization, and recycling[J]. J Mater Chem C, 2015, 3 (31): 8262-8271. [55] Wang Gang, Leng Yuankui, Guo Heze, et al. Efficient preparation of magnetic quantum dot barcodes[J]. J Mater Chem B, 2014, 2 (47): 8310-8313. [56] Zhao Yuanjin, Shum Hocheung, Chen Haosheng, et al. Microfluidic generation of multifunctional quantum dot barcode particles[J]. J Am Chem Soc, 2011, 133 (23): 8790-8793. [57] Gao Yali, Lam AWY, Chan WCW. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device[J]. ACS Appl Mater Interfaces, 2013, 5 (8): 2853-2860.