|
|
The Cytocompatibility of Ctenopharyngodon Idellus Fishskin Collagen with NIH3T3 Fibroblasts |
Yu Lan1, Wang Haibo2, Chen Zhuo1, Fang Cheng1* |
1(Laboratory of Transplant Engineering,Wuhan Polytechnical University,Wuhan 430023,China) 2(College of Chemical and Environmental Engineering,Wuhan Polytechnical University,Wuhan 430023,China) |
|
|
Abstract This study is aimed to test the cytocompatibility of fishskin acid-soluble collagen (FASC) of ctenopharyngodon idellus in vitro. The proliferation rates of NIH3T3 fibroblasts were detected using different concentrations of FASC solutions or coating gums by MTT experiment (n=6). The chemotaxis of fibroblasts towards FASC solutions were tested by chemotactic experiments of transwell (n=3). The cellular permeabilities in different concentrations of FASC coating gums were detected by invasive experiments of transwell (n=3). FASC solutions promote proliferation of NIH3T3 fibroblasts and the growth activity of the fibroblasts was dose-dependent on FASC. The proliferation rates of 16 μg/mL FASC solution in 48 and 96 h were (63.7±7.9)% and (87.3±8.7)%, that showed significant differences compared with the control group (P<0.001). NIH3T3 fibroblasts grew on FASC coating gums without significant differences compared with the control group (P>0.05). The chemotatic indexes showed significant differences between the concentration gradient groups of FASC solutions and the control group(P<0.05), which indicated that FASC has chemotaxis to fibroblasts. Invasion experiments showed fibroblasts could pass through FASC coating gums. These experiments confirmed that FASC possesses favourable cytocompatibility with NIH3T3 fibroblasts.
|
Received: 27 April 2016
|
|
|
|
|
[1] 王刚, 刘毅, 亢婷, 等. 京尼平交联Ⅰ型胶原蛋白材料与人脂肪间充质干细胞的生物相容性[J]. 中国组织工程研究, 2014, 18(34): 5423-5428. [2] Daei FN, Ardeshirylajimi A, Seyedjafari E, et al. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering[J]. Mol Biol Rep, 2014, 41(2): 741-749. [3] Ercan E, Bagla AG, Aksoy A, et al. In vitro protection of adipose tissue-derived mesenchymal stem cells by erythropoietin[J]. Acta Histochem, 2014, 16(1): 117-125. [4] Zhang Xiujie, Chen Xueying, Yang Ting, et al. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation[J]. Cell Tissue Bank, 2014, 15(4):31-41. [5] 黎洪棉, 高建华, 鲁峰, 等. 海绵状Ⅰ型胶原蛋白与兔脂肪干细胞的生物相容性[J]. 中国组织工程研究与临床康复, 2009, 13(25): 4829-4833. [6] Sionkowska A, Kozlowska J. Propertise and modification of 3-D collagen/hydroxyapatite composites[J]. Int J Biol Macromol, 2013, 52(9): 250-259. [7] Fallas JA, Dong J, Tao YJ, et al. Structural insights into charge pair interactions in triple helical collagen-like proteins[J]. American Society For Biochemistry And Molecular Biology, 2012, 287(11): 8039-8047. [8] 方成, 汪海波, 梅智强, 等. 鱼皮胶原蛋白海绵组织相容性的体内实验研究[J]. 中国生物医学工程学报, 2014, 2(33): 215-217. [9] 王艳, 汪海波. 草鱼鱼鳞中活性胶原蛋白提取工艺及参数优化[J]. 食品科学, 2010, 31(18): 71-75. [10] Wang Nanyao, Wang Qiong, Shen Dong, et al. Downregulation of microRNA-122 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by activating epithelial-mesenchymal transition[J]. Onco Targets And Therapy, 2016, 9(6): 2035-2047. [11] 史兆坤, 丁鹏, 孙杰, 等. 单核细胞趋化蛋白-1趋化巨噬细胞迁移与侵袭的体外实验研究[J]. 昆明医科大学学报, 2014, 35(4): 41-45. [12] 刘巍, 张杰, 朱辉新, 等, 转BMP-7软骨细胞在Matrigel胶支架中修复兔膝关节软骨缺损的实验研究[J]. 中国矫形外科杂志, 2014, 5(4): 414-417. [13] Ukegawa M, Bhatt K, Hirai T, et al. Bone marrow stromal cells combined with a honeycomb collagen sponge facilitate neurite elongation in vitro and neural restoration in the hemisected rat spinal cord[J]. Cell Transplant, 2015, 24(7): 1283-1297. [14] Giuseppe M, Ali M, Francesca MT, et al. Biosynthesis of collagen I, II, runx2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue[J]. Acta Histochemica, 2014, 116(12): 1407-1417. [15] Rana T, Hannu L, Lari H. et al. Expression and function of connexin 43 in human gingival wound healing and fibroblast[J]. PLoS ONE, 2015, 10(1): 15-21. [16] 郑声星, 金胜威, 连庆全, 等. 成纤维细胞参与炎症发生和消退[J]. 生命的化学, 2010, 30(3): 603-606. [17] Li Xiaodong, Chen Jing, Ruan Chengchao, et al. Vascular endothelial growth factor-induced osteopontin expression mediates vascular inflammation and neointima formation via flt-1 in adventitial fibroblasts[J]. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2250-2258. [18] 杨玲, 赵燕, 鲁亮, 等. 鲟鱼鱼皮胶原蛋白的提取及其理化性能分析[J]. 食品科学, 2013, 34(11): 23-24. [19] Rmuthu N, Mohan V, Selvam S, et al. Fluorescent nanonetworks: A novel bioalley for collagen scaffolds and tissue engineering[J]. Sci Rep. 2014, 7(16): 564-567. [20] Bi J, Koivisto L, Owen G, et al. Epithelial microvesicles promote an inflammatory phenotype in fibroblasts[J]. Journal Of Dental Research, 2016, 24(2): 215-221. [21] 王永芳, 李新宇, 宋莎莎, 等. 积雪草提取物对人外周血白细胞趋化以及成纤维细胞胶原合成的影响[J].中国中西医结合皮肤性病学杂志, 2015, 14(1): 8-11. [22] 汪海波, 梁艳萍, 汪海婴, 等.草鱼鱼鳞胶原蛋白的提取及其部分生物学性能[J]. 水产学报, 2012, 36(4): 554-556. [23] Proffen BL, Haslauer CM, Harris CE, et al. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate acl fibroblase migration proliferation and collagen gene expression[J]. Connect Tissue Res, 2013, 54(1): 3-5. |
|
|
|