|
|
A Tongue Image Recognition Method Based on Type II Diabetes Traditional Chinese Medicine Syndrome Classification |
Kan Hongxing1# Zhang Luyao1* Dong Changwu2 |
1School of Medical Information Technology, Anhui University Traditional Chinese Medicine, Hefei 230012, China 2Clinical College of Traditional Chinese Medicine, Anhui University Traditional Chinese Medicine, Hefei 230012, China |
|
|
Abstract Tongue diagnosis is one of the methods oftype II diabetes traditional Chinese medicine (TCM) syndrome differentiation. In order to reduce the diagnostic deviation caused by external light and the doctor′s experience, a tongue image recognition method was proposed in this paper according to the TCM for syndrome classification of type II diabetes. Firstly, the corrected tongue image was obtained by color-calibration. Secondly, based on the difference between the color space, tongue image was divided into background and tongue area using fast K-mean clustering method,and then tongue area was separated into tongue body area and tongue fur area using Ohta color threshing method. Thirdly, according to the type IIdiabetes TCM tongue features, the color features, crack features and dental indentations features were extracted form tongue body area, tongue fur and tongue nature area. Finally, the random forest was used as the classifier to train tongue features data, and compared with the support vector machine method. The proposedmethod has been tested in 218 tongue image cases. Experimental results showed that the average recognition accuracy of random forest methods was 90.37%, which was increased by 10.74% compared with that of the support vector machine method, suggesting the random forest method was more accurate and efficient for type II diabetes TCM syndrome classifications.
|
Received: 23 June 2015
|
|
|
|
|
[1] 徐贵华,王忆勤,李福凤. 计算机技术在中医舌象客观化研究中的应用进展[J]. 上海中医药大学学报,2005,19(2):56-59. [2] 张利,许家佗,何太文. 舌象图像分割技术的研究与应用进展[J].中华中医药杂志,2010,25(4):565-567. [3] 岳小强. 舌质颜色的模式识别及原发性肝癌患者舌色的临床研究[D]. 上海:第二军医大学, 2005. [4] 师晶丽,沈祥立,张大成,等. 舌诊客观化图像识别在原发性肾小球疾病辨证分型的研究[J]. 中国中医基础医学杂志,2009,15(2):120-122. [5] 朱穆朗玛,陆萍,夏春明,等.基于道格拉斯\|普克法提取55例齿痕舌图像特征研究[J]. 中华中医药学刊,2014,32(9):2138-2140. [6] 覃海松,黄忠朝,赵于前,等. 一种新的MLBP-Otsu算法及在舌裂纹分割中的应用[J]. 计算机工程与应用,2014,50(23):151-155. [7] 张康,金石,杜建强,等. 基于图像的舌体胖瘦分析[J]. 时珍国医国药,2014,25(5):1263-1266. [8] 吴喜庆,陆小左. 中医客观化疗效评价研究进展[J]. 现代中西医结合杂志,2014,23(13):1475-1477. [9] 焦月,张新峰,卓力. 中医舌象样本分类中加权SVM的应用研究[J]. 测控技术,2010,29(5):1-4. [10] 胡康达,符红光,孔祥振. 分级聚类支持向量机在中医舌像分类中的应用[J]. 计算机应用,2010,30(S2):272-273. [11] Breiman L. Random forest [J].Machine Learning, 2001, 45(1):5-32. [12] 淦家荣,陈岳祺. 2型糖尿病中医辨证分型研究[J]. 云南中医学院学报,2012,35(5):41-45. [13] 严倩华,余江毅. 2型糖尿病诊治研究进展[J]. 实用中医药杂志,2010,26(2):130-132. [14] 郑筱萸. 中药新药临床研究指导原则(试行)[M]. 北京:中国医药科技出版社,2002:233-237. [15] Chang CC, Lin CJ. Libsvm: a library for support vector machines[CP/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm,2009-08-16/2015-04-04. [16] Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification [J]. 台北:台湾大学资讯工程学系, 2003, 67(5):1-12. [17] Akobeng AK. Understanding diagnostic tests 2: Likelihood ratios, pre- and post-test probabilities and their use in clinical practice [J].ACTA Paediatrica, 2007, 96(4):487-491. [18] 许朝霞,王忆勤,颜建军,等. 基于支持向量机和人工神经网络的心血管疾病中医证候分类识别研究[J]. 北京中医药大学学报,2011,34(8):539-543. [19] 徐璡,许朝霞,许文杰,等. 基于贝叶斯网络原理的835例冠心病病例中医证候分类研究[J]. 上海中医药杂志,2014,48(1):10-13. [20] 施展,周昌乐. 舌象裂纹提取及特征分析[J]. 计算机科学与发展,2007,17(5):245-248. [21] 李建更,高志坤. 随机森林针对小样本数据类权重设置[J]. 计算机工程与应用,2009,45(26):131-133. [22] 尹华,胡玉平. 基于随机森林的不平衡特征选择算法[J]. 中山大学学报(自然科学版),2014,53(5):59-65. |
|
|
|