|
|
A Comparison of Magnetic Response Spectroscopy Quantification Tools between TARQUIN and LCModel |
Xue Aiguo1, Liu Renyuan2, Xu Lingyi1, Zhang Bing2, Sun Yu1, Wan Suiren1#* |
1 (Medical Electrics Laboratory of Southeastern University, Nanjing 210096, China) 2(Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China) |
|
|
|
Received: 28 January 2016
|
|
|
|
|
[1] De Graaf RA. Spectroscopic imaging and multivolume localization [M]//De Graaf RA. In Vivo NMR Spectroscopy. Chichester: John Wiley & Sons Ltd, 2007: 349-387. [2] Allen D. Elster Md JHBM. Questions and answers in magnetic resonance imaging [M].(2nd ed). St Louis: Mosby, 2001. [3] Panigrahy A, Nelson MD, Jr Bluml S. Magnetic resonance spectroscopy in pediatric neuroradiology: Clinical and research applications [J]. Pediatr Radiol, 2010, 40(1): 3-30. [4] Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy [J]. Neurotherapeutics, 2007, 4(3): 330-345. [5] Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications [J]. Clin Radiol, 2009, 64(1): 12-21. [6] Poullet JB, Sima DM, Van Huffel S. MRS signal quantitation: A review of time- and frequency-domain methods [J]. J Magn Reson, 2008, 195(2): 134-144. [7] Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra [J]. Magn Reson Med, 1993, 30(6): 672-679. [8] Reynolds G, Wilson M, Peet A, et al. An algorithm for the automated quantitation of metabolites in in vitro NMR signals [J]. Magn Reson Med, 2006, 56(6): 1211-1219. [9] Wilson M, Reynolds G, Kauppinen RA, et al. A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data [J]. Magn Reson Med, 2011, 65(1): 1-12. [10] De Graaf RA. Single volume localization and water suppression [M]//De Graaf RA. In Vivo NMR Spectroscopy.Chichester: John Wiley & Sons Ltd, 2007: 297-348. [11] Sajja BR, Wolinsky JS, Narayana PA. Proton magnetic resonance spectroscopy in multiple sclerosis [J]. Neuroimaging Clin N Am, 2009, 19(1): 45-58. [12] Bertolino A, Callicott JH, Nawroz S, et al. Reproducibility of proton magnetic resonance spectroscopic imaging in patients with schizophrenia [J]. Neuropsychopharmacology, 1998, 18(1): 1-9. [13] Vermathen P, Laxer KD, Matson GB, et al. Hippocampal structures: anteroposterior N-acetylaspartate differences in patients with epilepsy and control subjects as shown with proton MR spectroscopic imaging [J]. Radiology, 2000, 214(2): 403-410. [14] Kantarci K. 1H magnetic resonance spectroscopy in dementia [J]. Br J Radiol, 2007, 80 Spec No 2(S)146-152. [15] Ross BD, Bluml S, Cowan R, et al. In vivo MR spectroscopy of human dementia [J]. Neuroimaging Clin N Am, 1998, 8(4): 809-822. [16] Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD [J]. Neurology, 2001, 56(5): 592-598. [17] Fountas KN, Kapsalaki EZ, Gotsis SD, et al. In vivo proton magnetic resonance spectroscopy of brain tumors [J]. Stereotact Funct Neurosurg, 2000, 74(2): 83-94. [18] Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI [J]. Neuroradiology, 2002, 44(8): 656-666. [19] Brateman L. Chemical shift imaging: A review [J]. AJR Am J Roentgenol, 1986, 146(5): 971-980. [20] Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement [J]. Lancet, 1986, 1(8476): 307-310. |
[1] |
Liu Shuang, Tong Jingjing, Yang Jiajia, Qi Hongzhi, Ming Dong. Study on Emotion Recognition with Integrating EEG Homologous Samples Method[J]. Chinese Journal of Biomedical Engineering, 2016, 35(3): 272-277. |
[2] |
Lin Lin, Tan Xiaodan, Wang Tao. An Assessment of Linear Superposition Conditions for 40 Hz Auditory Steady-State Responses[J]. Chinese Journal of Biomedical Engineering, 2016, 35(3): 278-283. |
|
|
|
|