|
|
Maximal Information Coefficient on Identifying Differentially Expressed Genes of Permanent Atrial Fibrillation |
1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
2 School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, Jiangxi, China |
|
|
Abstract The atrial fibrillation is a common arrhythmia disease. It usually causes stroke resulting in high risk on morbidity and mortality. It can be insight into the biological processes, the functional disorders of atrial fibrillation and the genes associated with disease risks by analyzing a microarray data. A proposed novel statistical method named as maximal information coefficient (MIC) has excellent performance in exploring the relationship between twovariables. Based on the degree of relationship between the phenotypes and differentially or undifferentially expressed genes, the statistical method was introduced into the analysis of a microarray of permanent atrial fibrillations (GSE2240). Total of 41 genes were identified by the method, in which 14 genes are new differentially expressed genes. The differentially expressed genes identified by MIC were demonstrated that they were related with atrial fibrillation diseases, via the analyses of signaling pathway and enrichment in DAVID. Furthermore, MIC was used to analyze a microarray of breast cancer (GSE24037) to test the method. MIC is a nonparametric statistical method with antinoise, which leads it to be ideally suit for identifying differentially expressed genes.
|
|
|
|
|
[1]Schotten U, Ausma J, Stellbrink C, et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation[J]. Circulation, 2001, 103(5):691698.
[2]Nattel S. New ideas about atrial fibrillation 50 years[J]. Nature, 2002, 415(6868):219-226.
[3]涂承媛, 曾衍钧, 李树信. 房颤心电信号的分形维分析[J]. 中国生物医学工程学报, 2005, 24(2):163-166.
[4]刘靖. 心房颤动的治疗进展[J]. 西部医学, 2013, 25(10):1593-1595.
[5]Benjamin EJ, Wolf PA, D’Agostino RB, et al. Impact of atrial fibrillation on the risk of death the Framingham Heart Study[J]. Circulation, 1998, 98(10):946-952.
[6]Ho KK, Pinsky JL, Kannel WB, et al. The epidemiology of heart failure: the Framingham Study[J]. Journal of the American College of Cardiology, 1993, 22(4s1):A6-A13.
[7]Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study[J]. Stroke, 1991, 22(8):983-988.
[8]李靖, 陈宇光, 孔祥银. 基因表达系列分析技术的新进展[J]. 生物工程学报, 2001, 17(6):613-616.
[9]Kim YH, Lee JH, Lim DS, et al. Gene expression profiling of oxidative stress on atrial fibrillation in humans[J]. Experimental and Molecular Medicine, 2003, 35(5):336-349.
[10]Ohki-Kaneda R, Ohashi J, Yamamoto K, et al. Cardiac functionrelated gene expression profiles in human atrial myocytes[J]. Biochemical and Biophysical Research Communications, 2004, 320(4):1328-1336.
[11]Barth AS, Merk S, Arnoldi E, et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation expression of a ventricularlike genomic signature[J]. Circulation Research, 2005, 96(9):1022-1029.
[12]Censi F, Calcagnini G, Bartolini P, et al. A systems biology strategy on differential gene expression data discloses some biological features of atrial fibrillation[J]. PLoS One, 2010, 5(10):e13668.
[13]Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062):1518-1524.
[14]Jiao Xiaoli, Sherman BT, Huang DaWei, et al. DAVIDWS: a stateful web service to facilitate gene/protein list analysis[J]. Bioinformatics, 2012, 28(13):1805-1806.[15]Furlanello C, Serafini M, Merler S, et al. Entropybased gene ranking without selection bias for the predictive classification of microarray data[J]. BMC bioinformatics, 2003, 4(1):54-73.
[16]Huang DaWei, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Research, 2009, 37(1):1-13.
[17]Nishimura D. BioCarta[J]. Biotech Software & Internet Report: The Computer Software Journal for Scient, 2001, 2(3):117-120.
[18]刘明, 王米渠, 丁维俊, 等. 表达谱芯片数据的基因功能富集分析[J]. 生物医学工程学杂志, 2010, 27(5):1166-1169.
[19]尤元海, 张建中. 基因表达谱芯片的数据挖掘[J]. 中国生物工程杂志, 2009, 29(10):87-91.
[20]蒋定锋, 潘娟娟, 赵耐青. 差异表达基因筛选方法的比较[J]. 中国卫生统计, 2006, 23(5):417-420.
[21]李运明, 曹文君, 陈长生. 六种基因表达谱数据筛选差异表达基因方法的比较[J]. 中国卫生统计, 2009,(3):250-254.
[22]Shi Yigong, Massagué J. Mechanisms of TGF β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6):685-700.
[23]Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC)[J]. European Heart Journal, 2010, 31(19):2369-2429.
[24]Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation[J]. Journal of the American College of Cardiology, 2008, 51(8):802-809.
[25]Patterson GI, Padgett RW. TGFβrelated pathways: roles in Caenorhabditis elegans development[J]. Trends in Genetics, 2000, 16(1):27-33.
[26]Dijke PT, Goumans MJ, Itoh F, et al. Regulation of cell proliferation by Smad proteins[J]. Journal of Cellular Physiology, 2002, 191(1):1-16.
[27]Massagué J. How cells read TGFβ signals[J]. Nature Reviews Molecular Cell Biology, 2000, 1(3):169-178.
[28]RuizOrtega M, RodríguezVita J, SanchezLopez E, et al. TGFβ signaling in vascular fibrosis[J]. Cardiovascular Research, 2007, 74(2):196-206.
[29]ClarkGreuel JN, Connolly JM, Sorichillo E, et al. Transforming growth factorβ1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events[J]. The Annals of Thoracic Surgery, 2007, 83(3):946-953.
[30]Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferatoractivated receptorγ agonist, attenuates left ventricular remodeling and failure after eperimental myocardial infarction[J]. Circulation, 2002, 106(24):3126-3132.
[31]Everett TH, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation[J]. Heart Rhythm, 2007, 4(3):S24-S27.
[32]马宁, 张正国. 一种基于 Gene Ontology 注释信息的基因选择算法[J]. 中国生物医学工程学报, 2009, 28(5):696-700.
[33]Goette A, Staack T, Rcken C, et al. Increased expression of extracellular signalregulated kinase and angiotensinconverting enzyme in human atria during atrial fibrillation[J]. Journal of the American College of Cardiology, 2000, 35(6):1669-1677.
[34]Xu Jun, Cui Guanggen, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation[J]. Circulation, 2004, 109(3):363-368.
[35]VanWagoner DR , Pond AL, McCarthy PM, et al. Outward K+ current densities and Kv1 5 expression are reduced in chronic human atrial fibrillation[J]. Circulation Research, 1997, 〖STHZ〗80〖STBZ〗(6):772-781.
[36]AiméSempé C, Folliguet T, RückerMartin C, et al. Myocardial cell death in fibrillating and dilated human right atria[J]. Journal of the American College of Cardiology, 1999, 34(5):1577-1586.
[37]Li Duosheng, Cardin S, Han Hao, et al. Signal transduction underlying arrhythmogenic atrial remodeling due to congestive heart failure[C] // McCann J, eds. Circulation Conference 2000. Philadelphia: Lippincott Williams & Wilkins, 2000: 153-153.
[38]Goette A, Arndt M, Rcken C, et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans[J]. Circulation, 2000, 101(23):2678-2681.
[39]Lendeckel U, Arndt M, Wrenger S, et al. Expression and activity of ectopeptidases in fibrillating human atria[J]. Journal of Molecular and Cellular Cardiology, 2001, 33(6):1273-1281.
[40]Tuinenburg AE, VanVeldhuisen DJ , Boomsma F , et al. Comparison of plasma neurohormones in congestive heart failure patients with atrial fibrillation versus patients with sinus rhythm[J]. The American Journal of Cardiology, 1998, 81(10):1207-1210.
[41]Goette A, Lendeckel U, Klein HU. Signal transduction systems and atrial fibrillation[J]. Cardiovascular Research, 2002, 54(2):247-258.
[42]Li Maomi, Vuolo MA, Weidenheim KM, et al. Collectingduct carcinoma of the kidney with prominent signet ring cell features[J]. Modern Pathology, 2001, 14(6):623-628. |
|
|
|