|
|
Dynamic Brain Connectivity Analysis Based on Autoregressive-Model and Phase Slope Index |
Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing 100084, China |
|
|
Abstract Functional and effective connectivity are important branches in brain network research. Electroencephalogram (EEG) has sufficient temporal resolution to catch the fast brain dynamic changes, so it is suitable for effective connectivity analysis. We proposed a new method to estimate the effective connectivity base on EEG, namely autoregressive phase slope index (AR-PSI). Spectral estimation based on MVAR has high frequency resolution even on short time data. PSI is insensitive to linear mixture of noninteracting sources. AR-PSI combined advantages of the two methods. Compared with conventional Granger causality model, AR-PSI could eliminate the interference caused by volume conduction. Compared with conventional PSI, AR-PSI could get more accurate estimation of effective connectivity with short time data. Experimental data indicated that AR-PSI could exactly detect the effective connectivity between two signals and exclude the false detection. AR-PSI was also applied to dynamic brain connectivity analysis based on EEG recorded in Stroop paradigm. We found that brain connectivity density had significant difference under two conditions in 250~500 ms and 550~800 ms. The results indicated that the incongruent stimulus could make the density of brain network increase more quickly and expand the span of connectivity.
|
|
|
|
|
[1]Sporns O, Tononi G, Ktter R. The human connectome: a structural description of the human brain[J]. PLoS Computational Biology, 2005, 1(4): e42.
[2]蒋田仔, 刘勇, 李永辉. 脑网络:从脑结构到脑功能[J]. 生命科学, 2009(2):181-188.
[3]梁夏, 王金辉, 贺永. 人脑连接组研究:脑结构网络和脑功能网络[J]. 科学通报, 2010(16): 1565-1583.
[4]孙俊峰, 洪祥飞, 童善保. 复杂脑网络研究进展——结构、功能、计算与应用[J]. 复杂系统与复杂性科学, 2011, 7(4): 74-90.
[5]Bullmore E, Sporns O. The economy of brain network organization[J]. Nature Reviews Neuroscience, 2012, 13(5): 336-349.
[6]Van Essen DC, Smith SM, Barch DM, et al. The WUMinn human connectome project: an overview[J]. Neuroimage, 2013, 80: 62-79.
[7]Sporns O. Making sense of brain network data[J]. Nature Methods, 2013, 10(6): 491-493.
[8]Uehara T, Yamasaki T, Okamoto T, et al. Efficiency of a “smallworld” brain network depends on consciousness level: a restingstate FMRI study[J]. Cerebral Cortex, 2014, 24(6): 1529-1539.
[9]Koch MA, Norris DG, HundGeorgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging[J]. Neuroimage, 2002, 16(1): 241-250.[10]Fingelkurts AA, Fingelkurts AA, Khknen S. Functional connectivity in the brain—is it an elusive concept?[J]. Neuroscience & Biobehavioral Reviews, 2005, 28(8): 827-836.[11]Horwitz B. The elusive concept of brain connectivity[J]. Neuroimage, 2003, 19(2): 466-470.
[12]Handbook of Time Series Analysis: Recent Theoretical Developments and Applications[M].
New York: John Wiley & Sons, 2006.
[13]Nolte G, Ziehe A, Nikulin VV, et al. Robustly estimating the flow direction of information in complex physical systems[J]. Physical Review Letters, 2008, 100(23): 234101.
[14]Haufe S, Nikulin VV, Müller KR, et al. A critical assessment of connectivity measures for EEG data: a simulation study[J]. Neuroimage, 2013, 64(1):120-133.
[15]Lütkepohl H. New Introduction to Multiple Time Series Analysis[M]. Berlin: Springer Science & Business Media, 2007.
[16]Schneider T, Neumaier A. Algorithm 808: ARfit—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models[J]. ACM Transactions on Mathematical Software (TOMS), 2001, 27(1): 58-65.
[17]Morf M, Vieira A, Lee DTL, et al. Recursive multichannel maximum entropy spectral estimation[J]. IEEE Trans
Geosci Electron, 1978, 16(2): 85-94.
[18] Marple Jr SL. Digital Spectral Analysis with Applications[M]. Englewood Cliffs: PrenticeHall, 1987.
[19]Schlgl A. The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications [M]. Aachen: Shaker, 2000.
[20]Schlgl A. A comparison of multivariate autoregressive estimators[J]. Signal Processing, 2006, 86(9): 2426-2429.
[21]Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[22]Hosking JRM. The multivariate portmanteau statistic[J]. Journal of the American Statistical Association, 1980,
75(371): 602-608.
[23]Ding M, Bressler SL, Yang W, et al. Shortwindow spectral analysis of cortical eventrelated potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment[J]. Biological Cybernetics, 2000, 83(1): 35-45.
[24]Nolte G, Bai O, Wheaton L, et al. Identifying true brain interaction from EEG data using the imaginary part of coherency[J]. Clinical Neurophysiology, 2004, 115(0): 2292-2307.[25]高文静, 陈小刚, 高小榕. 基于 Hermite 滤波器的稳态视觉诱发电位背景标记 Stroop 效应包络分析[J]. 中国生物医学工程学报, 2014, 31(1): 1-7.
[26]Qiu J, Luo Y, Wang Q, et al. Brain mechanism of Stroop interference effect in Chinese characters[J]. Brain Research, 2006, 1072(1): 186-193.
[27]Liotti M, Woldorff MG, Perez R, et al. An ERP study of the temporal course of the Stroop colorword interference effect[J]. Neuropsychologia, 2000, 38(5): 701-711.
[28]Zysset S, Müller K, Lohmann G, et al. Colorword matching Stroop task: separating interference and response conflict[J]. Neuroimage, 2001, 13(1): 29-36.
[29]Schack B, Chen ACN, Mescha S, et al. Instantaneous EEG coherence analysis during the Stroop task[J]. Clinical Neurophysiology, 1999, 110(8): 1410-1426.
[30]Harrison BJ, Shaw M, Yücel M, et al. Functional connectivity during Stroop task performance.[J]. NeuroImage, 2005, 24(1):181-191.
[31]Hanslmayr S, Pasttter B, Buml KH, et al. The electrophysiological dynamics of interference during the stroop
task[J]. Journal of Cognitive Neuroscience, 2008, 20(2):215-225.
[32]MacLeod CM. Half a century of research on the Stroop effect: an integrative review[J]. Psychological Bulletin, 1991, 109(2): 163-203.
[33]Marzetti L, Nolte G, Perrucci MG, et al. The use of standardized infinity reference in EEG coherency studies[J]. Neuroimage, 2007, 36(1):48-63.
[34]Yun Q, Peng X, Yao D. A comparative study of different references for EEG default mode network: the use of the infinity reference.[J]. Clinical Neurophysiology, 2010, 121(12):1981-1991.
|
|
|
|