|
Abstract Brain WM fiber orientation reconstruction is the throat of fiber imaging that set the premise of fiber tractgraphy. In conventional approaches, constraint conditions are dependent on prior information of fiber orientation, limiting the improvement of computation efficiency and precision. In this work, we presented a dictionary basic function based fiber orientation distribution function (fODF) estimation method. First, the uniform distribution of dictionary basis functions on unit sphere was established; second, spherical deconvolution (SD) model based on the dictionary basis functions was established; third, the coefficients of basic functions were directly obtained using nonnegative least square method. The proposed method successfully avoided the spurious peak, leases computation burden and eliminates higher order illposed inverse problem, which makes the sparsity and nonnegativity needed for the representation straightforwardly represented by weighted sums of basic functions. Experiments on simulated and clinical brain data both verified that computational complexity of the proposed method is much less than that of SuperCSD and QBI under the same conditions, such as, computational time of the method is a third as long as that of SuperCSD; the angular resolution of the method increases to a range of 20°, while SuperCSD is 40° and QBI is 60°. Because the method is simple and efficient, angular error does not change with such parameters as angle, and with the addition of the improvement of angular resolution and angular error performance, the probability of error fiber orientation reconstruction decreases to less than 8%, which will provide accurate local fiber orientation for fiber tractgraphy.
|
|
|
|
|
[1]梁夏, 王金辉, 贺永. 人脑连接组研究: 脑结构网络和脑功能网络[J]. 科学通报, 2010 (16): 1565-1583.
[2]朱丽君, 朱元贵, 曹河圻, 等. 全球脑研究计划与展望[J]. 中国科学基金, 2013, 27(6): 359-362.
[3]Mori S, Crain BJ, Chacko VP, et al. Threedimensional tracking of axonal projections in the brain by magnetic resonance imaging[J]. Anuals of Neurology, 1999, 45(2): 265-269.
[4]Mori S, van Zijl P. Fiber tracking: principles and strategiesa technical review[J]. NMR in Biomedicine, 2002, 15(7-8): 468-480.
[5]Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)based white matter mapping in brain research: a review[J]. Journal of Molecular Neuroscience, 2008, 34(1): 51-61.
[6]Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophysical journal, 1994, 66(1): 259-267.
[7]Wedeen VJ, Wang RP, Schmahmann JD, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers[J].Neuroimage, 2008, 41(4): 1267-1277.
[8]Cheng J, Ghosh A, Deriche R, et al. Modelfree, regularized, fast, and robust analytical orientation distribution function estimation[C]//Proceedings of the 13th international conference on Medical image computing and computer-assisted intervention: Part I. Berlin: SpringerVerlag, 2010: 648-656.
[9]李蓉, 冯远静, 邵开来, 等. 磁共振扩散高阶张量成像的脑白质纤维微结构模型及特征提取算法[J]. 中国生物医学工程学报, 2012, 31(3): 365-373.
[10]Hlawitschka M, Scheuermann G. Tracking lines in higher order tensor fields[J]. Scientific Visualization: Advanced Concepts, 2010, 1: 124-135.
[11]Kaden E, Knsche TR, Anwander A. Parametric spherical deconvo lution: Inferring anatomical connectivity using diffusion MR imaging[J]. NeuroImage, 2007, 37(2): 474-488.[12]Jeurissen B, Leemans A, Tournier JD, et al. Estimating the number of fiber orientations in diffusion MRI voxels: a constrained spherical deconvolution study[C]//International Society Magnetic Resonance in Medicine. Stockholm: Wiley Online Library, 2010: 573.
[13]Tuch DS. Qball imaging[J]. Magnetic Resonance in Medicine, 2004, 52(6): 1358-1372.
[14]Tournier J, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[J]. NeuroImage, 2007, 35(4): 1459-1472.
[15]Parker GD, Marshall D, Rosin PL, et al. A pitfall in the reconstruct tion of fibre ODFs using spherical deconvolution of diffusion MRI data[J]. Neuroimage, 2013, 65: 433-448.
[16]张艳, 宋志坚. 脑白质纤维束跟踪算法的研究进展[J]. 复旦学报(医学版), 2014, 41(1): 1-7.
[17]吴占雄, 朱善安. 基于移动最小二乘法的白质纤维束走向跟踪[J]. 浙江大学学报(工学版), 2011, 45(3): 458-461.
[18]Tournier J, Calamante F, Gadian DG, et al. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution[J]. NeuroImage, 2004, 23(3): 1176-1185.
[19]Frank LR. Characterization of anisotropy in high angular resolution diffusionweighted MRI[J]. Magnetic Resonance in Medicine, 2002, 47(6): 1083-1099.
[20]Merlet S, Caruyer E, Deriche R. Parametric dictionary learning for modeling EAP and ODF in diffusion MRI[C]//Medical Image Computing and Computer Assisted Intervention (MICCAI).Beilin: Springer, 2012, 7512: 8 p.
[21]Sderman O, Jnsson B. Restricted diffusion in cylindrical geome try[J]. Journal of Magnetic Resonance, Series A, 1995, 117(1): 94-97.
[22]Landman BA, Bogovic JA, Wan H, et al. Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI[J]. NeuroImage, 2012, 59(3): 2175-2186.
[23]Michailovich O, Rathi Y, Dolui S. Spatially regularized compressed sensing for high angular resolution diffusion imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1100-1115.
[24]Calamante F, Tournier JD, Jackson GD, et al. Trackdensity imaging (TDI): superresolution white matter imaging using wholebrain trackdensity mapping[J]. Neuroimage, 2010, 53(4): 1233-1243.
|
|
|