|
|
Research Progress of Transcranial Random Noise Stimulation |
Zou Huiru1,2, Zhang Zhiguo3,4#, Huang Gan1,2, Li Linling1,2, Liang Zhen1,2, Zhang Li1,2, Wei Jinwen1,2* |
1(School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China) 2(Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, Guangdong, China) 3(School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China) 4(Peng Cheng Laboratory, Shenzhen 518055, Guangdong, China) |
|
|
Abstract Transcranial random noise stimulation (tRNS) is a specific type of transcranial electrical stimulation technique that uses current of random frequency and amplitude to modulate neural activity. It affects brain activity and cognitive behavior through mechanisms such as stochastic resonance, and has demonstrated remarkable modulation effects in the fields of neuroscience and neuropathology, thus gaining increasing attention and application. This reviewmainly introduced tRNS’s physiological effects, implementation, and the status and development trend in modulating perception, motion, learning and memory, and psychiatric symptoms.
|
Received: 28 October 2022
|
|
Corresponding Authors:
* E-mail: weijinwen2020@email.szu.edu.cn
|
About author:: #Senior member, Chinese Society of Biomedical Engineering |
|
|
|
[1] Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation [J]. J ECT, 2018, 34(3):144-152. [2] Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms [J]. Neural Plast, 2016, 2016:3616807. [3] Terney D, Chaieb L, Moliadze V, et al. Increasing human brain excitability by transcranial high-frequency random noise stimulation [J]. J Neurosci, 2008, 28(52):14147-14155. [4] Ambrus GG, Paulus W, Antal A. Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS [J]. Clin Neurophysiol, 2010, 121(11):1908-1914. [5] Heimrath K, Fiene M, Rufener KS, et al. Modulating human auditory processing by transcranial electrical stimulation [J]. Front Cell Neurosci, 2016, 10:53. [6] van der Groen O, Potok W, Wenderoth N, et al. Using noise for the better: the effects of transcranial random noise stimulation on the brain and behavior [J]. Neurosci Biobehav Rev, 2022, 138:104702. [7] van der Groen O, Tang MF, Wenderoth N, et al. Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making [J]. PLoS Comput Biol, 2018, 14(7):e1006301. [8] van der Groen O, Wenderoth N. Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception [J]. J Neurosci, 2016, 36(19):5289-5298. [9] Chaieb L, Kovacs G, Cziraki C, et al. Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex [J]. Exp Brain Res, 2009, 198(4):439-444. [10] Chaieb L, Antal A, Paulus W. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive [J]. Front Neurosci, 2015, 9:125. [11] Schoen I, Fromherz P. Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip [J]. J Neurophysiol. 2008, 100(1):346-357. [12] Moret B, Donato R, Nucci M, et al. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability [J]. Sci Rep, 2019, 9(1):15150. [13] Boetzel C, Herrmann CS. Potential targets for the treatment of ADHD using transcranial electrical current stimulation [J]. Prog Brain Res, 2021, 264:151-170. [14] Moliadze V, Atalay D, Antal A, et al. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities [J]. Brain Stimul, 2012, 5(4):505-511. [15] Chaieb L, Paulus W, Antal A. Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability [J]. Neural Plast, 2011, 2011:105927. [16] Potok W, van der Groen O, Bächinger M, et al. Transcranial random noise stimulation modulates neural processing of sensory and motor circuits, from potential cellular mechanisms to behavior: a scoping review [J]. eNeuro, 2022, 9(1):ENEURO.0248-21.2021. [17] Contemori G, Trotter Y, Cottereau BR, et al. tRNS boosts perceptual learning in peripheral vision [J]. Neuropsychologia, 2019, 125:129-136. [18] Cappelletti M, Gessaroli E, Hithersay R, et al. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe [J]. J Neurosci, 2013, 33(37):14899-14907. [19] Ghin F, O’Hare L, Pavan A. Electrophysiological aftereffects of high-frequency transcranial random noise stimulation (hf-tRNS): an EEG investigation [J]. Exp Brain Res, 2021, 239(8): 2399-2418. [20] Camilleri R, Pavan A, Campana G. The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia [J]. Neuropsychologia, 2016, 89:225-231. [21] Moret B, Camilleri R, Pavan A, et al. Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia [J]. Neuropsychologia, 2018, 114:125-133. [22] Fertonani A, Pirulli C, Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning [J]. J Nearosci, 2011, 31(43):15416-15423. [23] Pirulli C, Fertonani A, Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation [J]. Brain Stimul, 2013, 6(4):683-689. [24] Camilleri R, Pavan A, Ghin F, et al. Improvement of uncorrected visual acuity (UCVA) and contrast sensitivity (UCCS) with perceptual learning and transcranial random noise stimulation (tRNS) in individuals with mild myopia [J]. Front Psychol, 2014, 5:1234. [25] Campana G, Camilleri R, Pavan A, et al. Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS): a pilot study [J]. Front Psychol, 2014, 5:1402. [26] Donkor R, Silva AE, Teske C, et al. Repetitive visual cortex transcranial random noise stimulation in adults with amblyopia [J]. Sci Rep, 2021, 11(1):3029. [27] Herpich F, Melnick MD, Agosta S, et al. Boosting learning efficacy with noninvasive brain stimulation in intact and brain-damaged humans [J]. J Neurosci, 2019, 39(28):5551-5561. [28] Wang Yao, Shi Limeng, Dong Gaoyuan, et al. Effects of transcranial electrical stimulation on human auditory processing and behavior-a review [J]. Brain Sci, 2020, 10(8):531. [29] Van Doren J, Langguth B, Schecklmann M. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex [J]. Brain Stimul, 2014, 7(6):807-812. [30] Rufener KS, Ruhnau P, Heinze HJ, et al. Transcranial random noise stimulation (tRNS) shapes the processing of rapidly changing auditory information [J]. Front Cell Neurosci, 2017, 11:162. [31] Rufener KS, Geyer U, Janitzky K, et al. Modulating auditory selective attention by non-invasive brain stimulation: differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation [J]. Eur J Neurosci, 2018, 48(6):2301-2309. [32] Prete G, D′Anselmo A, Tommasi L, et al. Modulation of illusory auditory perception by transcranial electrical stimulation [J]. Front Neurosci, 2017, 11:351. [33] Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus [J]. Front Psychiatry, 2013, 4:158. [34] To WT, Ost J, Hart J Jr, et al. The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus [J]. J Neural Transm, 2017, 124(1):79-88. [35] Joos K, De Ridder D, Vanneste S. The differential effect of low-versus high-frequency random noise stimulation in the treatment of tinnitus [J]. Exp Brain Res, 2015, 233(5):1433-1440. [36] Vanneste S, De Ridder D. Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity [J]. Eur J Neurosci, 2011, 34(4):605-614. [37] Mohsen S, Pourbakht A, Farhadi M, et al. The efficacy and safety of multiple sessions of multisite transcranial random noise stimulation in treating chronic tinnitus [J]. Braz J Otorhinolaryngol, 2019, 85(5):628-635. [38] Mohsen S, Mahmoudian S, Talebian S, et al. Multisite transcranial random noise stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus [J]. J Clin Neurosci, 2019, 67:178-184. [39] Mohsen S, Mahmoudian S, Talebian S, et al. Prefrontal and auditory tRNS in sequence for treating chronic tinnitus: a modified multisite protocol [J]. Brain Stimul, 2018, 11(5):1177-1179. [40] Kreuzer PM, Poeppl TB, Rupprecht R, et al. Daily high-frequency transcranial random noise stimulation of bilateral temporal cortex in chronic tinnitus-a pilot study [J]. Sci Rep, 2019, 9(1):12274. [41] Rufener KS, Kauk J, Ruhnau P, et al. Inconsistent effects of stochastic resonance on human auditory processing [J]. Sci Rep, 2020, 10(1):6419. [42] Yao Junjie, Li Xiaoyun, Zhang Wenyun, et al. Analgesia induced by anodal tDCS and high-frequency tRNS over the motor cortex: immediate and sustained effects on pain perception [J]. Brain Stimul, 2021, 14(5):1174-1183. [43] Brighina F, Curatolo M, Cosentino G, et al. Brain modulation by electric currents in fibromyalgia: a structured review on noninvasive approach with transcranial electrical stimulation [J]. Front Hum Neurosci, 2019, 13:40. [44] Palm U, Chalah MA, Padberg F, et al. Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis [J]. Restor Neurol Neurosci, 2016, 34(2):189-199. [45] Alm PA, Dreimanis K. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. case report of a novel treatment [J]. J Pain Res, 2013, 6:479-486. [46] Ambrus GG, Antal A, Paulus W. Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes [J]. Clin Neurophysiol, 2011, 122(4):803-807. [47] O’Hare L, Goodwin P, Sharp A, et al. Improvement in visual perception after high-frequency transcranial random noise stimulation (hf-tRNS) in those with migraine: an equivalent noise approach [J]. Neuropsychologia, 2021, 161:107990. [48] Moliadze V, Fritzsche G, Antal A. Comparing the efficacy of excitatory transcranial stimulation methods measuring motor evoked potentials [J]. Neural Plast, 2014, 2014:837141. [49] Inukai Y, Saito K, Sasaki R, et al. Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability [J]. Front Hum Neurosci, 2016, 10:668. [50] Abe T, Miyaguchi S, Otsuru N, et al. The effect of transcranial random noise stimulation on corticospinal excitability and motor performance [J]. Neurosci Lett, 2019, 705:138-142. [51] Saiote C, Polanía R, Rosenberger K, et al. High-frequency TRNS reduces BOLD activity during visuomotor learning [J]. PLoS ONE, 2013, 8(3): e59669. [52] Jooss A, Haberbosch L, Köhn A, et al. Motor task-dependent dissociated effects of transcranial random noise stimulation in a finger-tapping task versus a go/no-go task on corticospinal excitability and task performance [J]. Front Neurosci, 2019, 13:161. [53] Arnao V, Riolo M, Carduccio F, et al. Effects of transcranial random noise stimulation combined with graded repetitive arm supplementary program (GRASP) on motor rehabilitation of the upper limb in sub-acute ischemic stroke patients: a randomized pilot study [J]. J Neural Transm, 2019, 126(12):1701-1706. [54] Hayward KS, Brauer SG, Ruddy KL, et al. Repetitive reaching training combined with transcranial random noise stimulation in stroke survivors with chronic and severe arm paresis is feasible: a pilot, triple-blind, randomised case series [J]. J Neuroeng Rehabil, 2017, 14(1):46. [55] Monastero R, Baschi R, Nicoletti A, et al. Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study [J]. J Neural Transm, 2020, 127(12):1589-1597. [56] Salemi G, Vazzoler G, Ragonese P, et al. Application of tRNS to improve multiple sclerosis fatigue: a pilot, single-blind, sham-controlled study [J]. J Neural Transm, 2019, 126(6):795-799. [57] Mulquiney PG, Hoy KE, Daskalakis ZJ, et al. Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex [J]. Clin Neurophysiol, 2011, 122(12):2384-2389. [58] Murphy OW, Hoy KE, Wong D, et al. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: behavioural and electrophysiological evidence [J]. Brain Stimul, 2020, 13(5):1370-1380. [59] Holmes J, Byrne EM, Gathercole SE, et al. Transcranial random noise stimulation does not enhance the effects of working memory training [J]. J Cogn Neurosci, 2016, 28(10):1471-1483. [60] Popescu T, Krause B, Terhune DB, et al. Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task [J]. Neuropsychologia, 2016,81:255-264. [61] Pasqualotto A. Transcranial random noise stimulation benefits arithmetic skills [J]. Neurobiol Learn Mem, 2016,133:7-12. [62] Snowball A, Tachtsidis I, Popescu T, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation [J]. Curr Biol, 2013, 23(11):987-992. [63] Chan HN, Alonzo A, Martin DM, et al. Treatment of major depressive disorder by transcranial random noise stimulation: case report of a novel treatment [J]. Biol Psychiatry, 2012, 72(4):e9-e10. [64] Nikolin S, Alonzo A, Martin D, et al. Transcranial random noise stimulation for the acute treatment of depression: a randomized controlled trial [J]. Int J Neuropsychopharmacol, 2020, 23(3):146-156. [65] Schecklmann M, Nejati V, Poeppl TB, et al. Bifrontal high-frequency transcranial random noise stimulation is not effective as an add-on treatment in depression [J]. J Psychiatr Res, 2021, 132:116-122. [66] Chang CC, Lin YY, Tzeng NS, et al. Adjunct high-frequency transcranial random noise stimulation over the lateral prefrontal cortex improves negative symptoms of schizophrenia: a randomized, double-blind, sham-controlled pilot study [J]. J Psychiatr Res, 2021, 132:151-160. [67] Palm U, Hasan A, Keeser D, et al. Transcranial random noise stimulation for the treatment of negative symptoms in schizophrenia [J]. Schizophr Res, 2013, 146(1-3):372-373. [68] Haesebaert F, Mondino M, Saoud M, et al. Efficacy and safety of fronto-temporal transcranial random noise stimulation (tRNS) in drug-free patients with schizophrenia: a case study [J]. Schizophr Res, 2014, 159(1):251-252. [69] Yang D, Shin YI, Hong KS. Systemic review on transcranial electrical stimulation parameters and EEG/fNIRS features for brain diseases [J]. Front Neurosci, 2021, 15:629323. [70] Barker RN, Brauer SG. Upper limb recovery after stroke: the stroke survivors′ perspective [J]. Disabil Rehabil, 2005, 27(20):1213-1223. [71] Sánchez-León CA, Sánchez-López Á, Gómez-Climent MA, et al. Impact of chronic transcranial random noise stimulation (tRNS) on GABAergic and glutamatergic activity markers in the prefrontal cortex of juvenile mice [J]. Prog Brain Res, 2021, 264:323-341. [72] Bradley C, Nydam AS, Dux PE, et al. State-dependent effects of neural stimulation on brain function and cognition [J]. Nat Rev Neurosci, 2022, 23(8):459-475. |
[1] |
Wen Shuojie, Zhou Jingyu, Zhou Wenjun, Jiang Jinfeng, Peng Bo. Augmented Region-Growing-Based Motion Tracking Using Bayesian Inference and Local Polynomial Fitting for Quasi-Static Ultrasound Elastography[J]. Chinese Journal of Biomedical Engineering, 2024, 43(1): 39-48. |
[2] |
Xu Hui, He Hong, Zhang Huiming, Zhang Li. Transfer Learning for Motor Imagery EEG Signals in Riemannian Manifold Tangent Space[J]. Chinese Journal of Biomedical Engineering, 2023, 42(6): 659-667. |
|
|
|
|