|
|
The Mechanism and Applications of Cryoablation for Tumor |
Chen Mu, Liu Wei, Liu Baolin* |
(Institute of Biothermal and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China) |
|
|
Abstract Cryoablation is a non-invasive tumor therapy which carry out repeated freeze-thaw cycles with the aid of refrigerant (eg.nitrogen and helium), causing damage to the tumor tissues by ice crystals formation, microcirculation injury, apoptosis and cryo-immunologic response. In recent years, cryoablation has become an important treatment method for many types of tumors due to its less invasiveness, high targeting property and good visualization of the ice ball in cryotherapy. However, cryoablation still faces many difficulties, such as causing several kinds of complications and the freezing boundary is difficult to control. This paper reviewed the mechanism, technical features, application status, main advantages and disadvantages and development trend of cryoablation. At the same time, how to improve the complications of cryoablation by optimizing the freeze-thaw program and combining immunotherapy were also discussed. The challenges facing the complete ablation of large tumors were prospected and summarized.
|
Received: 07 May 2022
|
|
Corresponding Authors:
*E-mail: blliuk@163.com
|
|
|
|
[1] Mahnken AH, König AM, Figiel JH. Current Technique and Application of Percutaneous Cryotherapy[J]. Rofo, 2018, 190(9): 836-846. [2] Gage AA. History of cryosurgery[J]. Semin Surg Oncol, 1998, 14(2): 99-109. [3] Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208. [4] Ratanaprasatporn L, Sainani N, Duda JB, et al. Imaging findings during and after percutaneous cryoablation of hepatic tumors[J]. Abdom Radiol (NY), 2019, 44(7): 2602-2626. [5] Rieder C, Schwenke M, Pätz T, et al. Evaluation of a numerical simulation for cryoablation - comparison with bench data, clinical kidney and lung cases[J]. Int J Hyperthermia, 2020, 37(1): 1268-1278. [6] Hossain SMC, Zhang X, Haider Z, et al. Optimization of prostatic cryosurgery with multi-cryoprobe based on refrigerant flow[J]. J Therm Biol, 2018, 76: 58-67. [7] 宋涛, 刘宝林, 常兆华,等. 血管影响肿瘤治疗效果的仿真研究[J]. 制冷学报, 2019, 40(6): 151-158. [8] Golkar E, Rao PP, Joskowicz L, et al. GPU-based 3D iceball modeling for fast cryoablation simulation and planning[J]. Int J Comput Assist Radiol Surg, 2019, 14(9): 1577-1588. [9] Song Tao, Liu Baolin, Xu Binkai, et al. Numerical study and experimental verification of tissue cryofreezing based on flexible cryoprobe system[J]. Cryo Letters, 2019, 40(3): 164-172. [10] Ahmed M, Brace CL, Lee FT, Jr., et al. Principles of and advances in percutaneous ablation[J]. Radiology, 2011, 258(2): 351-369. [11] 倪润明. 液氮低温微创冷刀系统的设计与实验研究[D]. 重庆:重庆大学, 2012. [12] Baust JG, Snyder KK, Santucci KL, et al. Cryoablation: physical and molecular basis with putative immunological consequences[J]. Int J Hyperthermia, 2019, 36(Sup1): 10-16. [13] Lugnani F, Macchioro M, Rubinsky B. Cryoelectrolysis-electrolytic processes in a frozen physiological saline medium[J]. PeerJ, 2017, 5: e2810. [14] Li Teng, Li Min, Dia VP, et al. Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities[J]. International Journal of Biological Macromolecules, 2020, 165: 2378-2386. [15] 翟焕阁, 肖正红, 杨双林. CT引导下氩氦刀冷冻消融术辅助治疗原发性肝癌对肿瘤组织血流变化的影响[J]. 中国CT和MRI杂志, 2021, 19(9): 96-99,110. [16] 智雅婧, 郑媞, 那顺孟和. 氩氦刀冷冻消融靶向治疗中晚期恶性肿瘤的应用进展[J]. 当代医学, 2021, 27(15): 191-194. [17] Imai S, Kitago M, Matsuda S, et al. Acute phase response and postprocedural evaluation of open and laparoscopic cryoablation procedures in porcine Pancreases[J]. Pancreas, 2020, 49(9): 1255-1262. [18] Baust JG, Bischof JC, Jiang-Hughes S, et al. Re-purposing cryoablation: a combinatorial ‘therapy’ for the destruction of tissue[J]. Prostate Cancer Prostatic Dis, 2015, 18(2): 87-95. [19] 孟亮亮, 张肖, 张啸波, 等. 冷冻消融联合免疫治疗实体肿瘤研究进展[J]. 中国介入影像与治疗学, 2019, 16(12): 759-762. [20] 段桦, 王丹, 连岩岩, 等. 冷冻消融免疫效应的研究进展[J]. 中国肿瘤临床, 2020, 47(18): 949-954. [21] Wang Ning, Ye Yangtian, Deng Minhua, et al. Prostate cryoablation combined with androgen deprivation therapy for newly diagnosed metastatic prostate cancer: a propensity score-based study[J]. Prostate Cancer Prostatic Dis, 2021, 24(3): 837-844. [22] Guo Runqi, Guo Xiaoxiao, Li Yuanming, et al. Cryoablation, high-intensity focused ultrasound, irreversible electroporation, and vascular-targeted photodynamic therapy for prostate cancer: a systemic review and meta-analysis[J]. Int J Clin Oncol, 2021, 26(3): 461-484. [23] 卢杨. T3期转移性前列腺癌患者经氩氦冷冻消融术联合亮丙瑞林、比卡鲁胺治疗的回顾性分析[J]. 中国疗养医学, 2021, 30(8): 868-870. [24] Bossier R, Sanguedolce F, Territo A, et al. Whole and hemi-gland cryoablation for primary localized prostate cancer: short and medium-term oncological and functional outcomes[J]. Actas Urol Esp (Engl Ed), 2020, 44(3): 172-178. [25] Ward JF, Jones JS. Focal cryotherapy for localized prostate cancer: a report from the national Cryo On-Line Database (COLD) Registry[J]. BJU Int, 2012, 109(11): 1648-1654. [26] Chen Chung-Hsin, Chen Yu-Ching, Pu Yeong-Shiau. Tumor location on MRI determines outcomes of patients with prostate cancer after total prostate cryoablation[J]. Cryobiology, 2021, 98: 39-45. [27] Arcot R, Potts BA, Polascik TJ. Focal cryoablation of image-localized prostate cancer[J]. Journal of Endourology, 2021, 35: S17-S23. [28] Exterkate L, Peters M, Somford DM, et al. Functional and oncological outcomes of salvage cryosurgery for radiorecurrent prostate cancer[J]. BJU Int, 2021, 128(1): 46-56. [29] Overduin CG, Jenniskens SFM, Sedelaar JPM, et al. Percutaneous MR-guided focal cryoablation for recurrent prostate cancer following radiation therapy: retrospective analysis of iceball margins and outcomes[J]. Eur Radiol, 2017, 27(11): 4828-4836. [30] Cernic S, Marrocchio C, Ciabattoni R, et al. Percutaneous CT-guided renal cryoablation: technical aspects, safety, and long-term oncological outcomes in a single center[J]. Medicina (Kaunas), 2021, 57(3):291-308. [31] Ushijima Y, Asayama Y, Nishie A, et al. Cryoablation for secondary renal cell carcinoma after surgical nephrectomy[J]. Cardiovascular and Interventional Radiology, 2021, 44(3): 414-420. [32] Miyazaki M, Komatsu Y, Yoshihara T, et al. Bowel injury complicating percutaneous cryoablation of large renal cell carcinoma[J]. Radiology Case Reports, 2020, 15(5): 580-585. [33] Georgiades CS, Rodriguez R. Efficacy and safety of percutaneous cryoablation for stage 1A/B renal cell carcinoma: results of a prospective, single-arm, 5-year study[J]. Cardiovasc Intervent Radiol, 2014, 37(6): 1494-1499. [34] Breen DJ, King AJ, Patel N, et al. Image-guided cryoablation for sporadic renal cell carcinoma: three- and 5-year outcomes in 220 patients with biopsy-proven renal cell carcinoma[J]. Radiology, 2018, 289(2): 554-561. [35] Nielsen TK, Vedel PF, Borgbjerg J, et al. Renal cryoablation: five- and 10-year survival outcomes in patients with biopsy-proven renal cell carcinoma[J]. Scand J Urol, 2020, 54(5): 408-412. [36] Selvaggio O, Silecchia G, Gravina M, et al. Mini invasive approaches in the treatment of small renal masses: TC-guided renal cryoablation in elderly[J]. Arch Ital Urol Androl, 2020, 92(4): 309-313. [37] Garnon J, Van Strijen MJ, Nielsen TK, et al. Safety of percutaneous renal cryoablation: an international multicentre experience from the EuRECA retrospective percutaneous database[J]. Eur Radiol, 2019, 29(11): 6293-6299. [38] Moynagh MR, Schmit GD, Thompson RH, et al. Percutaneous cryoablation of clinical T2 (> 7 cm) renal masses: technical considerations, complications, and short-term outcomes[J]. J Vasc Interv Radiol, 2015, 26(6): 800-806. [39] Palumbo C, Cyr SJ, Mazzone E, et al. Impact of tumor size on cancer-specific mortality rate after local tumor ablation in T1a renal-cell carcinoma[J]. J Endourol, 2019, 33(7): 606-613. [40] Duan Hua, Zheng Shuyue, Luo Chufan, et al. Cryoablation for advanced non-small cell lung cancer: a protocol for a systematic review[J]. BMJ Open, 2020, 10(9): e033460. [41] Lin Miao, Eiken P, Blackmon S. Image guided thermal ablation in lung cancer treatment[J]. J Thorac Dis, 2020, 12(11): 7039-7047. [42] Das SK, Huang YY, Li B, et al. Comparing cryoablation and microwave ablation for the treatment of patients with stage IIIB/IV non-small cell lung cancer[J]. Oncol Lett, 2020, 19(1): 1031-1041. [43] Yang Wuwei, An Yonghui, Li Quanwang, et al. Co-ablation versus cryoablation for the treatment of stage III-IV non-small cell lung cancer: a prospective, noninferiority, randomized, controlled trial (RCT)[J]. Thorac Cancer, 2021, 12(4): 475-483. [44] Niu Lizhi, Xu Kecheng, Mu Feng. Cryosurgery for lung cancer[J]. J Thorac Dis, 2012, 4(4): 408-419. [45] Vyas V, Paul M. Catastrophic complications following cryoablation of lung cancer[J]. Proceedings (Baylor University. Medical Center), 2020, 34(1): 131-132. [46] Jiang Feng, Dong Guiyu, Wang Xiongwen. The clinical efficacy of argon-helium knife cryoablation combined with nivolumab in the treatment of advanced non-small cell lung cancer[J]. Cryobiology, 2021,102: 92-96. [47] 李龙飞, 柳晨, 曹生亚, 等. 氩氦刀冷冻治疗对肺癌患者免疫功能影响及临床意义[J]. 中华肿瘤防治杂志, 2021, 28(16): 1231-1235. [48] Zhang Yishi, Niu Lizhi, Zhan Ke, et al. Percutaneous imaging-guided cryoablation for lung cancer[J]. J Thorac Dis, 2016, 8(Suppl 9): S705-S709. [49] Liu Shupeng, Zhu Xinhai, Qin Zilin, et al. Computed tomography-guided percutaneous cryoablation for lung ground-glass opacity: a pilot study[J]. Journal of Cancer Research and Therapeutics, 2019, 15(2): 370-374. [50] 马洋洋, 陈继冰, 曾健滢, 等. 氩氦冷冻消融技术在乳腺恶性肿瘤中的应用进展[J]. 生物医学工程与临床, 2020, 24(2): 219-222. [51] Van De Voort EMF, Struik GM, Birnie E, et al. Thermal ablation as an alternative for surgical resection of small (≤ 2 cm) breast cancers:a meta-analysis[J]. Clin Breast Cancer, 2021,14:199-208. [52] Habrawi Z, Melkus MW, Khan S, et al. Cryoablation: a promising non-operative therapy for low-risk breast cancer[J]. Am J Surg, 2021, 221(1): 127-133. [53] Pusceddu C, Paliogiannis P, Nigri G, et al. Cryoablation in the management of breast cancer: evidence to date[J]. Breast Cancer-Targets and Therapy, 2019, 11: 283-292. [54] Pusceddu C, Melis L, Ballicu N, et al. Cryoablation of primary breast cancer in patients with metastatic disease: considerations arising from a single-centre data analysis[J]. Biomed Res Int, 2017, 2017: 3839012. [55] Snyder KK, Van Buskirk RG, Baust JG, et al. Breast cancer cryoablation: assessment of the impact of fundamental procedural variables in an in vitro human breast cancer model[J]. Breast Cancer-Basic and Clinical Research, 2020, 14: 1-9. [56] Regen-Tuero HC, Ward RC, Sikov WM, et al. Cryoablation and immunotherapy for breast cancer: overview and rationale for combined therapy[J]. Radiol Imaging Cancer, 2021, 3(2): e200134. [57] Takada M, Toi M. Cryosurgery for primary breast cancers, its biological impact, and clinical outcomes[J]. Int J Clin Oncol, 2019, 24(6): 608-613. [58] Wang Ligang, Liu Chao, Liu Jiantao, et al. MRI-guided cryoablation of hepatic dome hepatocellular carcinomas using I-Topen high-field-strength scanner[J]. American Journal of Roentgenology, 2019, 212(6): 1361-1369. [59] Kalra N, Gupta P, Jugpal T, et al. Percutaneous cryoablation of liver tumors: initial experience from a tertiary care center in India[J]. J Clin Exp Hepatol, 2021, 11(3): 305-311. [60] Kim R, Kang TW, Cha DI, et al. Percutaneous cryoablation for perivascular hepatocellular carcinoma: therapeutic efficacy and vascular complications[J]. European Radiology, 2019, 29(2): 654-662. [61] Yan Qian, He Fan, Wang Boqing, et al. Argon-helium cryoablation for liver carcinoma in high-risk locations: safety and efficacy[J]. Cryobiology, 2019, 90: 8-14. [62] Zhang Wei, Gao Xudong, Sun Jie, et al. Percutaneous argon-helium cryoablation for small hepatocellular carcinoma located adjacent to a major organ or viscus: a retrospective study of 92 patients at a single center[J]. Med Sci Monit, 2021, 27: e931473. [63] Li Xin, Xu Jiahua, Gu Xiaoqiang, et al. Case report: antiangiogenic therapy plus immune checkpoint inhibitors combined with intratumoral cryoablation for hepatocellular carcinoma[J]. Frontiers in Immunology, 2021, 12: 740790. [64] 许立国, 冯广森, 林亚超, 等. 细胞免疫联合手术对结直肠癌肝转移患者生存质量的影响[J]. 分子诊断与治疗杂志, 2019, 11(4): 295-302. [65] 格桑罗布, 陈磊, 孙涛, 等. 冷冻消融治疗肝细胞癌的研究进展[J]. 临床放射学杂志, 2021, 40(2): 397-400. [66] De Baere T, Tselikas L, Gravel G, et al. Lung ablation: best practice/results/response assessment/role alongside other ablative therapies[J]. Clin Radiol, 2017, 72(8): 657-664. [67] 李捷, 郭文治, 赵永福, 等. 高强度聚焦超声、氩氦刀冷冻消融及射频消融治疗小肝癌疗效对比[J]. 中华肝脏外科手术学电子杂志, 2019, 8(2): 133-138. [68] 王猛, 周志刚, 杜可朴, 等. 氩氦刀冷冻消融与射频消融对Ⅰ期非小细胞肺癌的疗效对比分析[J]. 中华医学杂志, 2022, 102(31): 2458-2464. [69] 常诗卉, 王佩国, 菅喜岐. 高强度聚焦超声脑肿瘤治疗焦域温度均匀分布调控的数值仿真研究[J]. 生物医学工程学杂志, 2018, 35(6): 877-886. [70] 解丽芹, 左喜瑞, 张楠, 等. 磁性纳米颗粒的产热机制及在肿瘤热疗中的应用[J]. 中国生物医学工程学报, 2021, 40(5): 608-619. [71] Yakkala C, Denys A, Kandalaft L, et al. Cryoablation and immunotherapy of cancer[J]. Current Opinion in Biotechnology, 2020, 65: 60-64. [72] Ní Eochagáin A. Cryoshock following cryoablation for hepatocellular carcinoma[J]. J Clin Anesth, 2021, 77: 110641. [73] 邓湘凌, 王欣, 沈阳坤. 冷冻消融在肿瘤免疫治疗中的应用进展[J]. 中国细胞生物学学报, 2022, 44(2): 341-349. |
[1] |
Tan Ling, Liang Ying, Ma Wenjie, Xia Jingming, Zhu Jining. Three-Dimensional Reconstruction Method of Lesion Slices Based on Refined Isosurface[J]. Chinese Journal of Biomedical Engineering, 2024, 43(1): 49-59. |
[2] |
Meng Xiangfu, Yang Ziyi, Yang Xiaolin, Hou Jiayue. Prediction Model of Tumor Mutation Burden for Lung Adenocarcinoma Based on Pathological Tissue Slice[J]. Chinese Journal of Biomedical Engineering, 2023, 42(6): 698-709. |
|
|
|
|