|
|
Research on the Applications of Electrochemical Sensor Modified with Layer-by-Layer Self-Assembly Films |
Shi Gaofan1,2, Lin Xiangde2*, Liu Huajie3, Zhang Mengmeng2, Xia Pengpeng2, Liu Sisi2, Chen Yuzhu2, Zeng Dongdong2,3* |
1(School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China) 2(The Medical Instrumentation College, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China) 3(School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China) |
|
|
Abstract Electrochemical sensors are widely used in the detection of various biochemical substances due to their excellent sensitivity, detection limit, selectivity and response rate. The electrode acts as a sensitive element of electrochemical sensors, and a reasonable surface modification coating is particularly important to improve the detection accuracy and stability of the sensor. The layer-by-layer self-assembly technology is widely used in the field of electrochemical sensors, because it is able to construct three-dimensional material system with nanometer precision controllable parameters by alternately depositing interacting substances on the substrate. In this paper,we summarized assembly materials (including polyelectrolytes and nanoparticles, etc.)the film driven force (including electrostatic interaction, covalent bond, hydrogen bond, etc.), performance optimization and technical improvement of the layer-by-layer self-assembly technologies were summarized. In addition, electrochemical sensors modified by layer-by-layer self-assembly films of nanomaterials and their applications in biomarker detection, air monitoring, metal ion detection were introduced.
|
Received: 05 May 2022
|
|
Corresponding Authors:
* E-mail: linxd@sumhs.edu.cn;zengdd@sumhs.edu.cn
|
|
|
|
[1] Zeng D, Wang Z, Meng Z, et al. DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma[J]. ACS Appl Mater Interfaces, 2017, 9(28): 24118-24125. [2] Molinnus D, Drinic A, Iken H, et al. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk[J]. Biosens Bioelectron, 2021, 183: 113204. [3] Zeng D, Zhang H, Zhu D, et al. A novel ultrasensitive electrochemical DNA sensor based on double tetrahedral nanostructures[J]. Biosens Bioelectron, 2015, 71: 434-438. [4] Zeng D, San L, Qian F, et al. Framework nucleic acid-enabled programming of electrochemical catalytic properties of artificial enzymes[J]. ACS Appl Mater Interfaces, 2019, 11(24): 21859-21864. [5] Xiong Y, Li H, Li X, et al. Layer-by-layer self-assembly of polyaniline nanofibers/TiO2 nanotubes heterojunction thin film for ammonia detection at room temperature[J]. Nanotechnology, 2019, 30(13): 135501. [6] Zhang D, Jiang C, Li P, et al. Layer-by-layer self-assembly of Co3O4 nanorod-decorated MoS2 nanosheet-based nanocomposite toward high-performance ammonia detection[J]. ACS Appl Mater Interfaces, 2017, 9(7): 6462-6471. [7] Lin X, Yang M, Jeong H, et al. Durable superhydrophilic coatings formed for anti-biofouling and oil-water separation[J]. Journal of Membrane Science, 2016, 506: 22-30. [8] Wagberg L, Erlandsson J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials[J]. Adv Mater, 2021, 33(28): e2001474. [9] Iler RK. Multilayers of colloidal particles[J]. Journal of Colloid Interface Science, 1966, 21(6): 569-594. [10] Decher G, Hong JD, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films, 1992, 210-211(2): 831-835. [11] Ariga K, Yamauchi Y, Rydzek G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution[J]. Chemistry Letters, 2014, 45(21): 36-68. [12] Cao S, Wu H, Pijpers IAB, et al. Cucurbit-like polymersomes with aggregation-induced emission properties show enzyme-mediated motility[J]. ACS Nano, 2021, 15(11): 18270. [13] Zhang S, Vaida J, Parenti J, et al. Programmed multidrug delivery based on bio-inspired capsule-integrated nanocoatings for infected bone defect treatment[J]. ACS Appl Mater Interfaces, 2021, 13(10): 12454-12462. [14] Ferjaoui Z, Nahle S, Chang CS, et al. Layer-by-layer self-assembly of polyelectrolytes on superparamagnetic nanoparticle surfaces[J]. Acs Omega, 2020, 5(10): 4770-4777. [15] Correia AR, Sampaio I, Comparetti EJ, et al. Optimized PAH/folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors[J]. Bioelectrochemistry, 2021, 137: 107685. [16] Wang Z, Vahidmohammadi A, Ouyang L, et al. Layer-by-layer self-assembled nanostructured electrodes for lithium-ion batteries[J]. Small, 2021, 17(6): e2006434. [17] Wang Z, Bai J, Xu H, et al. Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage[J]. J Colloid Interface Sci, 2020, 577: 329-336. [18] Wang Z, Ouyang L, Li H, et al. Layer-by-layer assembly of strong thin films with high lithium ion conductance for batteries and beyond[J]. Small, 2021, 17(32): e2100954. [19] Choi D, Heo J, Aviles Milan J, et al. Structured nanofilms comprising Laponite(R) and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111440. [20] Zheng J, Rahman N, Li L, et al. Biofunctionalization of electrospun fiber membranes by LbL-collagen/chondroitin sulfate nanocoating followed by mineralization for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112295. [21] Lan L, Liu H, Yu X, et al. Polymer-coated organic crystals with solvent-resistant capacity and optical waveguiding function[J]. Angew Chem Int Ed Engl, 2021, 60(20): 11283-11287. [22] Li S, Sun J, Yan J, et al. Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride[J]. Food Chem, 2021, 339: 128016. [23] Wang L, Wang Y, Dai J, et al. Coordination-driven interfacial cross-linked graphene oxide-alginate nacre mesh with underwater superoleophobicity for oil-water separation[J]. Carbohydr Polym, 2021, 251: 117097. [24] Su S, Sun Q, Ma J, et al. Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes[J]. Chem Commun (Camb), 2020, 56(63): 9012-9015. [25] Huang WP, Qian HL, Wang J, et al. Periodic stratified porous structures in dynamic polyelectrolyte films through standing-wave optical crosslinking for structural color[J]. Adv Sci (Weinh), 2021, 8(15): e2100402. [26] Pei X, Gan L, Tong Z, et al. Robust cellulose-based composite adsorption membrane for heavy metal removal[J]. J Hazard Mater, 2021, 406: 124746. [27] Guo D, Xiao Y, Li T, et al. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly[J]. J Colloid Interface Sci, 2020, 560: 273-283. [28] Primo EN, Kogan MJ, Verdejo HE, et al. Label-free graphene oxide-based surface plasmon resonance immunosensor for the quantification of galectin-3, a novel cardiac biomarker[J]. ACS Appl Mater Interfaces, 2018, 10(28): 23501-23508. [29] Chen A, Liu R, Peng X, et al. 2D Hybrid nanomaterials for selective detection of NO2 and SO2 using “light on and off” strategy[J]. ACS Appl Mater Interfaces, 2017, 9(42): 37191-37200. [30] Jiang C, Zhang D, Yin N, et al. Acetylene gas-sensing properties of layer-by-layer self-assembled Ag-decorated Tin dioxide/graphene nanocomposite film[J]. Nanomaterials (Basel), 2017, 7(9): 278. [31] Lajevardi Esfahani S, Rouhani S, Ranjbar Z. Layer-by-layer assembly of electroactive dye/LDHs nanoplatelet matrix film for advanced dual electro-optical sensing applications[J]. Nanoscale Res Lett, 2020, 15(1): 210. [32] Nurdiwijayanto L, Nishijima H, Miyake Y, et al. Solution-processed two-dimensional metal oxide anticorrosion nanocoating[J]. Nano Lett, 2021, 21(16): 7044-7049. [33] Li YB, Li T, Dai XC, et al. Precise tuning of coordination positions for transition-metal ions via layer-by-layer assembly to enhance solar hydrogen production[J]. ACS Appl Mater Interfaces, 2020, 12(4): 4373-4384. [34] Chino K. Multinetwork elastomer using covalent bond, hydrogen bond, and clay plane bond[J]. ACS Omega, 2021, 6(46): 31168-31176. [35] Gattas-Asfura KM, Abuid NJ, Labrada I, et al. Promoting dendrimer self-assembly enhances covalent layer-by-layer encapsulation of pancreatic islets[J]. ACS Biomater Sci Eng, 2020, 6(5): 2641-2651. [36] Zhang Y, Zhang Z, Wang Z, et al. Sensitive detection of prostate-specific antigen based on dual signal amplification of Fc@MgAl-LDH and NH2-MIL-101(Fe)[J]. Biosens Bioelectron, 2021, 190: 113437. [37] Zhang D, Fan X, Yang A, et al. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing[J]. J Colloid Interface Sci, 2018, 523: 217-225. [38] Martinez Jimenez MJ, Avila A, De Barros A, et al. Polyethyleneimine-functionalized carbon nanotube/graphene oxide composite: a novel sensing platform for Pb(II) acetate in aqueous solution[J]. ACS Omega, 2021, 6(28): 18190-18199. [39] Chakraborty G, Bhattarai A, De R. Polyelectrolyte-dye interactions: an overview[J]. Polymers (Basel), 2022, 14(3): 598. [40] Lim JW, Kim TY, Woo MA. Trends in sensor development toward next-generation point-of-care testing for mercury[J]. Biosens Bioelectron, 2021, 183: 113228. [41] Asadian E, Ghalkhani M, Shahrokhian S. Electrochemical sensing based on carbon nanoparticles: a review[J]. Sensors and Actuators B: Chemical, 2019, 293: 183-209. [42] Tian W, Vahidmohammadi A, Wang Z, et al. Layer-by-layer self-assembly of pillared two-dimensional multilayers[J]. Nat Commun, 2019, 10(1): 2558. [43] Cayuela A, Soriano ML, Carrillo-Carrion C, et al. Semiconductor and carbon-based fluorescent nanodots: the need for consistency[J]. Chem Commun (Camb), 2016, 52(7): 1311-1326. [44] Zhu C, Guo S, Zhai Y, et al. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker[J]. Langmuir, 2010, 26(10): 7614-8. [45] Manna U, Dhar J, Nayak R, et al. Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly[J]. Chem Commun (Camb), 2010, 46(13): 2250-2252. [46] Zhang Y, Yang S, Guan Y, et al. Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly[J]. Macromolecules, 2003, 36(11): 4238-4240. [47] Such GK, Johnston AP, Caruso F. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications[J]. Chem Soc Rev, 2011, 40(1): 19-29. [48] Zhang X, Chen H, Zhang H. Layer-by-layer assembly: from conventional to unconventional methods[J]. Chem Commun (Camb), 2007(14): 1395-1405. [49] Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process .1. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromolekulare Chemie. Macromolecular Symposia, 1991, 95(11): 1430-1434. [50] Kim Y, Choi M, Heo J, et al. Blocking chemical warfare agent simulants by graphene oxide/polymer multilayer membrane based on hydrogen bonding and size sieving effect[J]. J Hazard Mater, 2021, 427: 127884. [51] Stockton WB, Rubner MF. Molecular-level processing of conjugated polymers. 4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions[J]. Macromolecules, 1997, 30(9): 2717-2725. [52] Wang Z, Fu M, Wang Y, et al. Injectable carrier for zero-order release of salmon calcitonin[J]. ACS Biomater Sci Eng, 2020, 6(1): 485-493. [53] Zhou L, Zhang W, Lee J, et al. Controlled self-assembly of DNA-mimicking nanotubes to form a layer-by-layer scaffold for homeostatic tissue constructs[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51321-51332. [54] Sun S, Xie C, Chen J, et al. Responsive interfacial assemblies based on charge-transfer interactions[J]. Angew Chem Int Ed Engl, 2021, 60(50): 26363-26367. [55] Woo J, Na Y, Choi W I, et al. Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs[J]. Acta Biomater, 2021, 125: 242-252. [56] Li J, Si Y, Park Y E, et al. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer[J]. Mikrochim Acta, 2021, 188(4): 146. [57] Chen Z, Zhang Q, Shan J, et al. Detection of bitter taste molecules based on odorant-binding protein-modified screen-printed electrodes[J]. ACS Omega, 2020, 5(42): 27536-27545. [58] Liu G, Wang Z, Bao B, et al. Construction of sustainable and multifunctional polyester fabrics via an efficiently and eco-friendly spray-drying layer-by-layer strategy[J]. J Colloid Interface Sci, 2021, 588: 50-61. [59] Hao S, Jiang L, Li Y, et al. Facile preparation of COF composite membranes for nanofiltration by stoichiometric spraying layer-by-layer self-assembly[J]. Chem Commun (Camb), 2020, 56(3): 419-422. [60] Heo J, Choi M, Hong J. Facile surface modification of polyethylene film via spray-assisted layer-by-layer self-assembly of graphene oxide for oxygen barrier properties[J]. Sci Rep, 2019, 9(1): 2754. [61] Sun W, Zhang J, Xie M, et al. Ultrathin aramid/COF heterolayered membrane for solid-state Li-metal batteries[J]. Nano Lett, 2020, 20(11): 8120-8126. [62] Salomaki M, Marttila L, Kivela H, et al. Oxidative spin-spray-assembled coordinative multilayers as platforms for capacitive films[J]. Langmuir, 2020, 36(24): 6736-6748. [63] Marets N, Kanno S, Ogata S, et al. Lanthanide-oligomeric brush films: from luminescence properties to structure resolution[J]. ACS Omega, 2019, 4(13): 15512-15520. [64] Du Hill L, De Keersmaecker M, Colbert AE, et al. Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces[J]. Mater Horiz, 2022, 9(1): 471-481. [65] Cheng M, Jiang C, Luo C, et al. Investigating zigzag film growth behaviors in layer-by-layer self-assembly of small molecules through a high-gravity technique[J]. ACS Appl Mater Interfaces, 2015, 7(33): 18824-18831. [66] Jiang C, Luo C, Liu X, et al. Adjusting the ion permeability of polyelectrolyte multilayers through layer-by-layer assembly under a high gravity field[J]. ACS Appl Mater Interfaces, 2015, 7(20): 10920-10927. [67] Lettieri S, Battaglino B, Sacco A, et al. A green and easy-to-assemble electrochemical biosensor based on thylakoid membranes for photosynthetic herbicides detection[J]. Biosens Bioelectron, 2021, 198: 113838. [68] Rosati G, Urban M, Zhao L, et al. A plug, print & play inkjet printing and impedance-based biosensing technology operating through a smartphone for clinical diagnostics[J]. Biosens Bioelectron, 2022, 196: 113737. [69] Ali MA, Hu C, Jahan S, et al. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes[J]. Adv Mater, 2021, 33(7): e2006647. [70] Neto JBMR, Soares AC, Bataglioli RA, et al. Polysaccharide multilayer films in sensors for detecting prostate tumor cells based on hyaluronan-CD44 interactions[J]. Cells, 2020, 9(6): 1563. [71] Panapimonlawat T, Phanichphant S, Sriwichai S. Electrochemical dopamine biosensor based on poly(3-aminobenzylamine) layer-by-layer self-assembled multilayer thin film[J]. Polymers (Basel), 2021, 13(9): 1488. [72] Pang Y, Huang Y, Li W, et al. Conjugated polyelectrolyte/graphene multilayer films for simultaneous electrochemical sensing of three monohydroxylated polycyclic aromatic hydrocarbons[J]. ACS Applied Nano Materials, 2019, 2(12): 7785-7794. [73] Si Y, Park JW, Jung S, et al. Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions[J]. Biosens Bioelectron, 2018, 121: 265-271. [74] Anderson WJ, Nowinska K, Hutter T, et al. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy[J]. Nanoscale, 2018, 10(15): 7138-7146. [75] Yuehong P, Nianci Y, Xiaofang S, et al. Conjugated polymer self-assembled with graphene: Synthesis and electrochemical 1-hydroxypyrene sensor[J]. Polymer, 2020, 188(3): 122139. [76] Zhang S, Zahed MA, Sharifuzzaman M, et al. A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration[J]. Biosens Bioelectron, 2021, 175: 112844. [77] Piper A, Oberg Mansson I, Khaliliazar S, et al. A disposable, wearable, flexible, stitched textile electrochemical biosensing platform[J]. Biosens Bioelectron, 2021, 194: 113604. [78] Zhang S, Wang J, Torad NL, et al. Rational Design of nanoporous MoS2 /VS2 heteroarchitecture for ultrahigh performance ammonia sensors[J]. Small, 2020, 16(12): e1901718. [79] Pei Y, Zhang X, Hui Z, et al. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives[J]. ACS Nano, 2021, 15(3): 3996-4017. [80] Mashock M, Yu K, Cui S, et al. Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces[J]. ACS Appl Mater Interfaces, 2012, 4(8): 4192-4199. [81] Peregrino PP, Cavallari MR, Fonseca FJ, et al. Starch-mediated immobilization, photochemical reduction, and gas sensitivity of graphene oxide films[J]. ACS Omega, 2020, 5(10): 5001-5012. [82] Wu J, Zhang D, Cao Y. Fabrication of iron-doped titanium dioxide quantum dots/molybdenum disulfide nanoflower for ethanol gas sensing[J]. J Colloid Interface Sci, 2018, 529: 556-567. [83] Zhang D, Zong X, Wu Z, et al. Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity-sensing applications[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32631-32639. [84] Rui Z, Wang L, Deng J, et al. Hierarchical structure with heterogeneous phase as high performance sensing materials for trimethylamine gas detecting[J]. Sensors and Actuators, 2015, 220: 1224-1231. [85] Cao Z, Zhang Y, Luo Z, et al. Construction of a self-assembled polyelectrolyte/graphene oxide multilayer film and its interaction with metal ions[J]. Langmuir, 2021, 37(41): 12148-12162. [86] Aspermair P, Ramach U, Reiner-Rozman C, et al. Dual monitoring of surface reactions in real time by combined surface-plasmon resonance and field-effect transistor interrogation[J]. J Am Chem Soc, 2020, 142(27): 11709-11716. [87] Gutierrez-Pineda E, Andreozzi P, Diamanti E, et al. Effects of valinomycin doping on the electrical and structural properties of planar lipid bilayers supported on polyelectrolyte multilayers[J]. Bioelectrochemistry, 2021, 138: 107688. [88] Stekolshchikova AA, Radaev AV, Orlova OY, et al. Thin and flexible ion sensors based on polyelectrolyte multilayers assembled onto the carbon adhesive tape[J]. ACS Omega, 2019, 4(13): 15421-15427. [89] Nikolaev KG, Kalmykov EV, Shavronskaya DO, et al. Electrosens platform with a polyelectrolyte-based carbon fiber sensor for point-of-care analysis of Zn in blood and urine[J]. ACS Omega, 2020, 5(30): 18987-18994. [90] Kong BS, Geng J, Jung HT. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions[J]. Chem Commun (Camb), 2009(16): 2174-2176. [91] Pansri S, Noothongkaew S. MWCNTs/r-GO hybrid films fabricated by layer by layer assembly for supercapacitor electrodes[J]. Journal of Energy Storage, 2019, 22: 153-156. [92] Gittleson FS, Kohn DJ, Li X, et al. Improving the assembly speed, quality, and tunability of thin conductive multilayers[J]. ACS Nano, 2012, 6(5): 3703-3711. |
[1] |
She Zhizhong, Yu Shu, Li Yun-ping, Yin Yanxiong, Zhong Hui, Li Xiao, Xiao Tao, Yang Hu. Cytotoxicity Study of Cobalt Alloys and Titanium Alloys[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 124-128. |
[2] |
REN Yu Qiang1 LI Li Ming1*CHAI Xin Yu1 REN Qiu Shi2 YANG He Long1 &. Feature Selection and Sample Classification for SELDITOF Mass Spectrometry Data Based on Affinity Propagation Clustering[J]. journal1, 2013, 32(1): 14-20. |
|
|
|
|