|
|
Prediction of Breast Cancer Neoadjuvant Chemotherapy Based on Longitudinal Time DepthNetwork Fusion |
Xue Tailong1, Fan Ming1, Chen Shujun2, Li Lihua1* |
1(Institute of Biomedical Engineering and Instrument,Hangzhou Dianzi University, Hangzhou 310018,China) 2(Department of Radiology,Zhejiang Cancer Hospital, Hangzhou 310022,China) |
|
|
Abstract Neoadjuvant chemotherapy can improve the cure rate of breast cancer, but it is not effective for all patients. Accurate prediction of chemotherapy efficacy can provide reference for physicians to formulate treatment protocols. This study used deep learning to integrate the image characteristics of longitudinal time dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the efficacy of neoadjuvant chemotherapy. We analyzed 164 DCE-MRI images of patients who underwent neoadjuvant chemotherapy for breast cancer, and selected the maximum tumor diameter and two upper and lower slices from each patient's image data set to expand the data to 442 cases that were randomly divided into 312 cases in the training set and 130 cases in the test set. DCE-MRI images had 6 sequences in total. Segmented the breast area of each sequence and removed the skin and chest cavity. Using deep learning model,the efficacy of neoadjuvant chemotherapy was predicted based on the images before chemotherapy, after 2 courses of chemotherapy and both of them, respectively. We drew the ROC curve of the prediction results and calculated the area under the curve (AUC) to evaluate the classification performance of the model. The best AUC of deep learning model for predicting the efficacy of the images before chemotherapy and the images after two courses of chemotherapy was 0.775 and 0.808 respectively, and the best AUC for predicting the efficacy of the fusion of images before chemotherapy and images after 2 courses of chemotherapy was 0.863, which was better than using the images before chemotherapy. The experimental results showed that compared with the existing approach of using the images before chemotherapy, using the fusion of longitudinal time images could improve the prediction performance of neoadjuvant chemotherapy.
|
Received: 15 September 2021
|
|
Corresponding Authors:
*E-mail: lilh@hdu.edu.cn
|
|
|
|
[1] DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA: A Cancer Journal for Clinicians, 2019, 69(6): 438-451. [2] Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods[J]. International Journal of Cancer, 2019, 144(8): 1941-1953. [3] 江泽飞,许凤锐.乳腺癌精准治疗:20年探索历程[J].中国实用外科杂志,2020,40(1):83-88. [4] 左婷婷, 陈万青. 中国乳腺癌全人群生存率分析研究进展[J]. 中国肿瘤临床, 2016,43(14): 639-642. [5] 杨云,黄元夕.乳腺癌新辅助化疗疗效及其与生物标志物检测水平变化的相关性[J].现代肿瘤医学,2020,28(20):3546-3549. [6] Kaufmann M, Minckwitz G, Mamounas EP, et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer[J]. Ann Surg Oncol, 2012,19(5):1508-1516. [7] 叶冬熳,侯怡如,潘福治.超声及其新技术的影像评估乳腺癌新辅助治疗效果[J].中华放射学杂志,2021,55(8):885-888. [8] 邵帅, 李培峰, 柳玉彬,等. 乳腺癌新辅助化疗疗效评价体系[J]. 现代生物医学进展, 2012, 12(25): 4964-4969. [9] 彭舒怡, 杨帆, 韩萍. 乳腺癌新辅助化疗疗效的MRI评价研究进展[J]. 国际医学放射学杂志, 2019, 42(2):177-180. [10] 韩芸蔚, 温绍艳, 刘伟, 等. 乳腺癌新辅助化疗的临床评价方法解析[J].中国肿瘤临床, 2011, 38(7): 415-418. [11] 代青立,杨敏,段庆红.影像组学在预测乳腺癌新辅助化疗疗效的研究进展[J].影像诊断与介入放射学,2021,30(4):293-298. [12] 王中一, 毛宁, 谢海柱. 乳腺癌MRI影像组学的研究进展[J]. 磁共振成像, 2021, 12(1):109-111. [13] 刘子天. 磁共振成像在乳腺癌诊断中的应用进展[J]. 影像研究与医学应用, 2020, 4(11): 76-77. [14] 徐婷.乳腺磁共振功能成像在鉴别乳腺良恶性病变中的应用[J].中国医疗器械信息,2020,26(23):31-32. [15] Genevieve AW, Kimberly MR, Bonnie NJ, et al. Qualitative radiogenomics: association between oncotype DX test recurrence score and BI-RADS mammographic and breast MR imaging features [J]. Radiology, 2018, 286(1):60-70. [16] 付举众, 范明, 邵国良, 等. 基于动态增强MRI特征的乳腺癌新辅助化疗疗效预测研究[J]. 航天医学与医学工程, 2016, 29(1): 39-44. [17] 罗益贤, 马捷, 刘永光, 等. 动态增强MRI对乳腺癌新辅助化疗的疗效评价及预测[J]. 中国医学物理学杂志, 2019, 36(7): 794-799. [18] 孙海馨,张仁知,周纯武,等.动态增强磁共振成像定量参数早期预测局部进展期乳腺癌新辅助化疗效果的价值[J].肿瘤影像学,2020,29(2):127-133. [19] 宋慧玲,崔艳芬,杨晓棠.乳腺癌动态增强磁共振成像纹理分析对新辅助化疗疗效预测与评估研究[J].肿瘤影像学,2020,29(3):241-249. [20] Tudorica A, Oh KY, Troxell ML, et al. Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE-MRI [J]. Translational Oncology, 2016, 9(1): 8-17. [21] Aghaei F, Tan M, Hollingsworth AB, et al. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy[J]. Medical Physics, 2015, 42(11): 6520-6528. [22] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. [23] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. [24] 代青立, 杨敏, 段庆红. 影像组学在预测乳腺癌新辅助化疗疗效的研究进展[J]. 影像诊断与介入放射学, 2021, 30(4):293-298. [25] 冯晓琴, 周辉. 浅析动态增强磁共振成像在乳腺癌诊断和治疗中的应用价值[J]. 影像研究与医学应用, 2020, 4(6):91-92. [26] 王春业, 王爱杰, 李凤华,等. MRI纹理分析在预测新辅助化疗乳腺癌患者疗效中的价值分析[J]. 中华生物医学工程杂志, 2021, 27(4):434-437. [27] 刘锦辉,冷晓玲.多模态超声联合深度学习对乳腺癌新辅助化疗疗效及侵袭性评价的研究进展[J].分子影像学杂志,2021,44(6):1034-1040. |
[1] |
Wang Xiaoyu, Yang Yi, Li Fan, Chen Xueling, Gao Hanbing, Ma Zhaonan, He Jianghong, Cong Fengyu. Individual-Level Assessment in Patients with Disorders of Consciousness under Passive Auditory ERP Paradigm[J]. Chinese Journal of Biomedical Engineering, 2022, 41(2): 129-139. |
[2] |
Qin Xiwen, Wang Rui, Zhang Siqi. Classification of Breast Cancer Gene Data Based on gcForest[J]. Chinese Journal of Biomedical Engineering, 2022, 41(2): 177-185. |
|
|
|
|