|
|
Research Development of Electroencephalogram Acquisition Devices for Brain Computer Interface |
He Qing1*, Hao Sicong1, Si Juanning1, Wu Yingnian2, Cheng Jie1 |
1(School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China) 2(School of Automation, Beijing Information Science and Technology University, Beijing 100192, China) |
|
|
Abstract Brain computer interface (BCI) builds a novel and direct interactive mode between human brain and the outside, so that it has a very broad application prospects. Electroencephalogram (EEG) acquisition device, as an important means and approach of signals acquisition for BCI, is the critical point and foundation of the BCI technology and has received intensive attention. Owing to the explosive growth of the BCI research recently, various techniques of EEG acquisition spring up constantly. In the future, EEG acquisition devices will have huge application potential in the fields of science, medicine, military and human life. In order to clarify the development status and development direction of EEG acquisition devices, this paper discussed basic structure, performance optimization circuit and existing EEG acquisition products. Firstly, four main components of EEG acquisition equipment were analyzed. The performance optimization method of EEG acquisition equipment was classified and summarized, the key indicators of the existing mainstream EEG products were compared, their functional characteristics were expounded. Finally, the shortcomings of the existing EEG acquisition equipment were analyzed and its future development tendency was prospected.
|
Received: 05 December 2019
|
|
|
|
|
[1] 尧德中. 脑机接口:从神奇到现实转变[J]. 中国生物医学工程学报, 2014, 33(6): 641-643. [2] 王桂英, 王艳娟. 脑电采集用电极制造技术研究进展[J]. 科学技术与工程, 2018, 18(25): 107-115. [3] 张莉. 基于自发脑电信号的脑—机接口的研究[D]. 重庆: 重庆大学, 2008. [4] 李凤銮. 脑电地形图发展史[J]. 现代电生理学杂志, 1994(2): 125-126. [5] Michel CM, Murray MM, Lantz G, et al. EEG source imaging[J]. Clinical Neurophysiology, 2004, 115(10): 2195-2222. [6] 杨勇. 脑电—肌电—惯性信息同步采集系统设计[D]. 秦皇岛: 燕山大学, 2018. [7] 盖淑萍, 刘军涛, 刘欣阳, 等. 新型EEG检测干电极设计制备和测试研究[J]. 仪器仪表学报, 2016, 37(1): 144-151. [8] 王晓韡, 石立臣, 吕宝粮. 干电极脑电采集技术综述[J]. 中国生物医学工程学报, 2010, 29(5): 777-784. [9] 陈丰. 便携式EEG信号采集仪硬软件设计[D]. 武汉:华中科技大学, 2016. [10] 郭瑶. 脑电信号采集与处理系统设计[D].成都: 电子科技大学, 2007. [11] 袁俊. 基于低功耗蓝牙的脑电信号采集与处理系统设计[D]. 长沙: 湖南大学, 2018. [12] 景永豪. EEG信号采集与无线传输系统[D]. 哈尔滨: 哈尔滨理工大学, 2018. [13] 林德伟. 基于ADS1298与FPGA的脑电采集系统设计[D]. 天津: 天津工业大学, 2018. [14] 周信昌. 高速多导联脑电采集系统设计及数据压缩算法研究[D]. 广州: 广东工业大学, 2016. [15] 徐健. 多路脑电信号无线采集系统的设计[D].济南: 山东师范大学,2015. [16] 薛吉星. 多通道脑电信号采集与处理系统研究[D]. 广州: 华南理工大学, 2015. [17] 谢宏, 董洋洋, 姚楠, 等. 基于ADS1298与WiFi的脑电信号采集与传输系统设计[J]. 现代电子技术, 2013, 36(6): 150-153. [18] 王三强. 脑电信号采集系统设计及在脑—机接口中的应用研究[D]. 重庆: 重庆大学, 2006. [19] 史迅. 八导脑电放大器[D]. 成都: 电子科技大学, 2012. [20] 尧德中. 脑功能探测的电学理论与方法[M]. 北京:科学出版社,2003: 177-194. [21] Qin Yun,Xu Peng,Yao Dezhong. A comparative study ofdifferent references for EEG default mode network: The use ofthe infinity reference [J]. Clinical Neurophysiology, 2010, 121:1981-1991. [22] 贺龙. 基于STM32和ADS1298的24导脑电采集系统研究[D]. 秦皇岛:燕山大学, 2018. [23] Sahu AK. A review on different filter design techniques and topologies for bio-potential signal acquisition systems[C]//Proceedings of the International Conference on Communication and Electronics Systems (ICCES 2018). Coimbatore: IEEE, 2018: 934-937. [24] Arif R, Wijaya SK, Prawito, et al. Design of EEG data acquisition system based on raspberry pi 3 for acute ischemic stroke identification[C]//Proceedings of the International Conference on Signals and Systems (ICSigSys 2018). Bali: IEEE, 2018: 271-275. [25] 李昕, 谢佳利, 侯永捷, 等. 脑电特征分析在阿尔茨海默症临床研究中的应用[J]. 中国生物医学工程学报, 2016, 35(2): 234-240. [26] 王金甲, 胡备. 脑机接口的广义核线性判别分析方法研究[J]. 中国生物医学工程学报, 2012, 31(1): 75-82. [27] 高云园, 任磊磊, 周旭, 等. 基于变尺度符号传递熵的多通道脑肌电信号耦合分析[J]. 中国生物医学工程学报, 2018, 37(1): 8-16. [28] Cincotti F, Bianchi L, Birch G. BCI meeting 2005-workshop on technology: hardware and software[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 128-131. [29] 周卫东, 贾磊, 李英远. 独立分量分析的研究和脑电中心电干扰的消除[J]. 中国生物医学工程学报, 2002, 21(3): 226-230, 210. [30] Spinelli EM, Mayosky MA AC COUPLED Three op-amp bio-potential amplifier with active DC suppression[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(12): 1616-1619. [31] 郜东瑞, 李鹏霄, 陈其友, 等. 高共模抑制比全频段脑电采集系统[J]. 中国生物医学工程学报, 2015, 34(6): 708-713. [32] 刘铁军. 脑电信号采集系统 [P]. 中国专利: 201710006247.8,2017-01-05. [33] 倪迪. 脑电检测的若干问题[D]. 南京: 南京大学, 2013. [34] Degen T, Jackel H. Enhancing interference rejection of preamplified electrodes by automated gain adaption[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(11): 2031-2039. [35] 冼鹏伟. 多通道脑电采集系统的研究与设计[D]. 广州: 华南理工大学, 2016. [36] Martins R, Selberherr S, Vaz FA. A CMOS IC for portable EEG acquisition systems[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1191-1196. [37] Li Shuai, Wang Zeyu, Li Chunsheng. A wearable EEG real-time measure and analysis platform for home applications[C]//2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR). Shenyang: IEEE, 2018: 504-509. [38] Wang Zeyu, Li Wei, Chen Chen, et al. A multichannel reconfigurable EEG acquisition system design with felt-based soft material electrodes[C]//2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Houston: IEEE, 2018: 1-6. [39] Güner M, Erkmen B. Real-time, portable EEG signal acquisition system[C]//2018 Medical Technologies National Congress (TIPTEKNO). Magusa: IEEE, 2018: 1-4. [40] Valentin O, Ducharme M, Gabrielle C, et al., Validation and benchmarking of a wearable EEG acquisition platform for real-world applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(1): 103-111. [41] 张井想. 便携式脑电仪的设计及应用研究[D]. 徐州: 江苏师范大学, 2018. [42] Zhou Haiyan, Voelker M, Hauer J. A mixed-signal front-end ASIC for EEG acquisition system[C]//2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012). Seville: IEEE, 2012: 649-652. [43] Yazicioglu RF, Merken P, Puers R, et al. A 200uW eight-channel EEG acquisition ASIC for ambulatory EEG systems [J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 3025-3038. [44] Verma N, Shoeb A, Bohorquez J, et al. A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system[J]. IEEE Journal of Solid-State Circuits, 2010, 45(4): 804-816. [45] Yazicioglu RF, Merken P, Puers R, et al. A 60 μW 60 nV/Hz readout front-end for portable biopotential acquisition systems[J]. IEEE Journal of Solid-State Circuits, 2007, 42(5): 1100-1110. [46] Yim S, Park Y, Yang Han, et al. Power efficient SAR ADC adaptive to input activity for ECG monitoring applications[C]//2017 IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore: IEEE, 2017: 1-4. [47] Lee C, Song J. A chopper stabilized current-feedback instrumentation amplifier for EEG acquisition applications[J]. IEEE Access, 2019,7: 11565-11569. [48] Lee Peichen, Lin Jinyi, Hsieh C. A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(12): 2149-2157. [49] 孙建辉, 刘军涛, 徐声伟, 等. 高精度微弱脑电检测数模混合控制芯片系统[J]. 仪器仪表学报, 2016, 37(5): 1025-1033. [50] Chen Pinwen, Huang Chiwei, Wu Chungyu. An 1.97μW/Ch 65nm-CMOS 8-channel analog front-end acquisition circuit with fast-settling hybrid DC servo loop for EEG monitoring[C]//2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence: IEEE, 2018: 1-5. [51] Ren Yuan, He Jin, Liu Jingiing, et al. An 8-channel wearable EEG acquisition front-end IC with integrated multi-functions[C]//2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). Xi'an: IEEE, 2019: 1-3. [52] Dong Li, Gui Xiaoyan, Xie Yi, et al. An 8-channel biomedical front-end (BFE) with 6.2-μW per channel for EEG/ECoG acquisition[C]//2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). Beijing: IEEE, 2018: 104-105. [53] Neuner I, Rajkumar R, Brambilla CR, et al. Simultaneous PET-MR-EEG: technology, challenges and application in clinical neuroscience[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3(3): 377-385. [54] Li Yuanqing, Pan Jiahui, Wang Fei, et al. A hybrid BCI system combining p300 and SSVEP and its application to wheelchair control[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(11): 3156-3166. [55] Iturrate I, Chavarriaga R, Montesano L, et al. Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control[J]. Scientific Reports, 2015, 5: 13893. [56] Yin E, Zeyl T, Saab R, et al. A hybrid brain-computer interface based on the fusion of p300 and SSVEP scores[J]. IEEE Trans Neural Syst Rehabil Eng, 2015, 23(4): 693-701. [57] Wang Minjue, Daly I, Allison BZ, et al. A new hybrid BCI paradigm based on P300 and SSVEP[J]. Journal of Neuroscience Methods, 2015, 244:16-25. [58] Tidoni E, Gergondet P, Fusco G, et al. The role of audio-visual feedback in a thought-based control of a humanoid robot:A BCI study in healthy and spinal cord injured people[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, 25(6): 772-781. [59] Yu Tianyou, Xiao Jun, Wang Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(7): 1706-1717. [60] Lühmann A, Wabnitz H, Sander T, et al. M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid BCI and monitoring[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(6): 1199-1210. [61] Xu Jiawei, Mitra S, Matsumoto A, et al. A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks[J]. IEEE Journal of Solid-State Circuits, 2014, 49(9): 2005-2016. [62] 谢平, 陈迎亚, 郝艳彪, 等. 基于脑肌电融合的混合脑机接口研究[J]. 中国生物医学工程学报, 2016, 35(1): 20-30. [63] Favaro F, Oliver JP. Hardware implementation of a multi-channel EEG lossless compression algorithm[C]//2019 X Southern Conference on Programmable Logic (SPL). Buenos Aires: IEEE, 2019: 69-73. [64] Shoaran M, Kamal MH, Pollo C, et al. Compact low-power cortical recording architecture for compressive multichannel data acquisition[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(6): 857-870. [65] Moy T, Huang Liechao, Warren R, et al. An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 309-321. [66] Lai Chiqin, Ibrahim H, Abdullah MZ, et al. Literature survey: recording set up for electroencephalography (EEG) acquisition[C]//2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). Penang: IEEE, 2018: 333-338. [67] Xu Jiawei, Konijnenburg M, Ha H, et al. A 36μW reconfigurable analog front-end IC for multimodal vital signs monitoring[C]//2017 Symposium on VLSI Circuits. Kyoto: IEEE, 2017: C170-C171. [68] Huang Yujie Tzeng TH, Lin TW, et al. A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications[J]. IEEE Journal of Solid-State Circuits, 2014, 49(4):851-866. [69] 李方博, 龚安民, 刘方毅, 等. 基于运动想象的双脑脑机接口系统设计与鼠标控制应用[J].科学技术与工程, 2018, 18(27): 170-175. [70] Neuroscan [EB/OL]. https://compumedicsneuroscan.com/, 2020-01-20/2020-06-07. [71] Brain Products [EB/OL]. https://www.brainproducts.com/, 2020-04-29/2020-06-07. [72] EGI PHILIPS [EB/OL]. https://www.egi.com/, 2020-04-29/2020-06-07. [73] CGX [EB/OL]. https://www.cgxsystems.com/mobile-128, 2020-04-07/2020-06-07. [74] Neuracle 博睿康科技. NeuSen W系列无线脑电采集系统 [EB/OL]. http://www.neuracle.cn/productinfo/148706.html, 2020-04-24/2020-06-07. [75] Mihajlovic′ V, Grundlehner B, Vullers R, et al. Wearable, wireless EEG solutions in daily life applications: what are we missing? [J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(1): 6-21. |
[1] |
Wu Ruoyou, Wang Dexing, Yuan Hongchun, Gong Peng, Qin Enqian. Attention State Detection Based on Feature Encoding and Convolutional Neural Networks[J]. Chinese Journal of Biomedical Engineering, 2020, 39(6): 759-763. |
[2] |
Shen Lei, Geng Xinyi, Wang Shouyan. Epileptic States Recognition using Transfer Learning and Dilated CNN[J]. Chinese Journal of Biomedical Engineering, 2020, 39(6): 700-710. |
|
|
|
|