|
|
Research Progress of Biomimetic Periosteum for Bone Tissue Regeneration |
Liu Laijun1,2, Zhang Yu1,2, Li Chaojing1,2, Mao Jifu1,2, Wang Fujun1,2*, Wang Lu1,2* |
1(College of Textiles,Donghua University,Shanghai 201620,China) 2(Key Laboratory for Textile Science & Technology of Ministry of Education,Donghua University,Shanghai 201620,China) |
|
|
Abstract Periosteum is a highly vascularized connective tissue membrane covering the outer surface of cortical bone (except joints).It contains various bone cells and growth factors and plays a vital role in the development and regeneration of bone tissue. However,due to the limited number of available healthy periosteum,clinical treatment of critical size bone defects caused by trauma,tumors and congenital diseases still faces significant challenges. This has provided the impetus for the development of periosteum substitutes (biomimetic periosteum),which have a structure and function similar to natural periosteum. In this review,we highlighted the current research status in properties of biomimetic periosteum at the macro and micro levels,including biocompatibility,graded functionality,mechanical stability,biological activity,and clinical manageability. The four biomimetic periosteum preparation methods were listed based on different principles,and the main defects of various preparation methods were discussed. It is expected to provide reference for the development of biomimetic periosteum with better performance.
|
Received: 22 December 2019
|
|
|
|
|
[1] Amini AR,Laurencin CT,Nukavarapu SP.Bone tissue engineering:recent advances and challenges[J].Crit Rev Biomed Eng,2012,40(5):363-408. [2] Maji K,Dasgupta S,Pramanik K,et al.Preparation and characterization of gelatin-chitosan-nano beta-TCP based scaffold for orthopaedic application[J].Mater Sci Eng C Mater Biol Appl,2018,86:83-94. [3] Anderson SM,Siegman SN,Segura T.The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching[J].Biomaterials,2011,32(30):7432-7443. [4] Kang Yunqing,Ren Liling,Yang Yunzhi.Engineering vascularized bone grafts by integrating a biomimetic periosteum and beta-TCP scaffold[J].Acs Appl Mater Inter,2014,6(12):9622-9633. [5] Frohbergh ME,Katsman A,Botta GR,et al.Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering[J].Biomaterials,2012,33(36):9167-9178. [6] Ghanmi S,Trigui M,Baya W,et al.The periosteum-like effect of fresh human amniotic membrane on bone regeneration in a rabbit critical-sized defect model[J].Bone,2018,110:392-404. [7] Caridade SG,Monge C,Almodovar J,et al.Myoconductive and osteoinductive free-standing polysaccharide membranes[J].Acta Biomater,2015,15:139-149. [8] Zhang Xinping,Awad HA,O′keefe RJ,et al.A perspective:Engineering periosteum for structural bone graft healing[J].Clin Orthop Relat Res,2008,466(8):1777-1787. [9] Foolen J,Van Donkelaar CC,Nowlan N,et al.Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth[J].J Orthop Res,2008,26(9):1263-1268. [10] Allen MR,Hock JM,Burr DB.Periosteum:Biology,regulation,and response to osteoporosis therapies[J].Bone,2004,35(5):1003-1012. [11] Schonmeyr B,Clavin N,Avraham T,et al.Synthesis of atissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells[J].Tissue Eng Part A,2009,15(7):1833-1841. [12] Taz M,Bae SH,Jung HI,et al.Bone regeneration strategy by different sized multichanneled biphasic calcium phosphate granules:In vivo evaluation in rabbit model[J].J Biomater Appl,2018,32(10):1406-1420. [13] Dimitriou R,Jones E,Mcgonagle D,et al.Bone regeneration:Current concepts and future directions[J].BMC Med,2011,9:66. [14] Sun Tuanwei,Zhu Yingjie,Chen Feng,et al.Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility,improved mechanical properties and excellent cellular attachment[J].Chem-Asian J,2017,12(6):655-664. [15] Baldwin JG,Wagner F,Martine LC,et al.Periosteum tissue engineering in an orthotopic in vivo platform[J].Biomaterials,2017,121:193-204. [16] Dimitriou R,Mataliotakis GI,Calori GM,et al.The role of barrier membranes for guided bone regeneration and restoration of large bone defects:current experimental and clinical evidence[J].BMC Med,2012,10:81. [17] Montanaro L,Campoccia D,Arciola CR.Advancements in molecular epidemiology of implant infections and future perspectives[J].Biomaterials,2007,28(34):5155-5168. [18] Almehmadi AH,Alghamdi F.Biomarkers of alveolar bone resorption in gingival crevicular fluid:A systematic review[J].Arch Oral Biol,2018,93:12-21. [19] Xu Xiongcheng,Lu Yanjin,Li Shuman,et al.Copper-modified Ti6Al4V alloy fabricated by selective laser melting with pro-angiogenic and anti-inflammatory properties for potential guided bone regeneration applications[J].Mater Sci Eng C Mater Biol Appl,2018,90:198-210. [20] Thomaidis V,Kazakos K,Lyras DN,et al.Comparative study of 5 different membranes for guided bone regeneration of rabbit mandibular defects beyond critical size[J].Med Sci Monit,2008,14(4):BR67-BR73. [21] Zhao Changli,Wu Hongliu,Ni Jiahua,et al.Development of PLA/Mg composite for orthopedic implant:Tunable degradation and enhanced mineralization[J].Compos Sci Technol,2017,147:8-15. [22] Lou Tao,Wang Xuejun,Song Guojun,et al.Structure and properties of PLLA/beta-TCP nanocomposite scaffolds for bone tissue engineering[J].J Mater Sci-Mater Med,2015,26(1):34. [23] Hu Yuanyuan,Wang Jing,Xing Wangli,et al.Surface-Modified Pliable PDLLA/PCL/beta-TCP Scaffolds as a promising delivery system for bone regeneration[J].J Appl Polym Sci,2014,131(20):40951. [24] Huang Weijuan,Wang Yixiang,Chen Chao,et al.Fabrication of flexibleself-standing all-cellulose nanofibrous composite membranes for virus removal[J].Carbohydr Polym,2016,143:9-17. [25] Rodriguez K,Sundberg J,Gatenholm P,et al.Electrospun nanofibrous cellulose scaffolds with controlled microarchitecture[J].Carbohydr Polym,2014,100:143-149. [26] Freyman TM,Yannas IV,Gibson LJ.Cellular materials as porous scaffolds for tissue engineering[J].Progress in Materials Science,2001,46(3-4):273-282. [27] Murphy CM,Haugh MG,O′brien FJ.The effect of mean pore size on cell attachment,proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering[J].Biomaterials,2010,31(3):461-466. [28] Karageorgiou V,Kaplan D.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26(27):5474-5491. [29] Khang D,Choi J,Im YM,et al.Role of subnano-,nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells[J].Biomaterials,2012,33(26):5997-6007. [30] Yoo D.New paradigms in hierarchical porous scaffold design for tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2013,33(3):1759-1772. [31] Wei Jie,Jia Junfeng,Wu Fan,et al.Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration[J].Biomaterials,2010,31(6):1260-1269. [32] Lian Meifei,Sun Binbin,Qiao Zhiguang,et al.Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration[J].Colloids Surf B Biointerfaces,2019,176:219-229. [33] Huang Yanping,Dan Nianhua,Dan Weihua,et al.Facile fabrication of gelatin and polycaprolactone based bilayered membranes via spin coating method with antibacterial and cyto-compatible properties[J].Int J Biol Macromol,2019,124:699-707. [34] Gaio N,Martino A,Toth Z,et al.Masquelet technique:The effect of altering implant material and topography on membrane matrix composition,mechanical and barrier properties in a rat defect model[J].J Biomech,2018,72:53-62. [35] Chen Yingqi,Ye SH,Sato H,et al.Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction[J].J Tissue Eng Regen Med,2018,12(6):1374-1388. [36] Lindfors LT,Tervonen EAT,Sandor GKB,et al.Guided bone regeneration using a titanium-reinforced ePTFE membrane and particulate autogenous bone:the effect of smoking and membrane exposure[J].Oral Surg Oral Med O,2010,109(6):825-830. [37] Lu Jingyi,Yu Huijun,Chen Chuanzhong.Biological properties of calcium phosphate biomaterials for bone repair:a review[J].Rsc Adv,2018,8(4):2015-2033. [38] Rad MM,Khorasani SN,Ghasemi-Mobarakeh L,et al.Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J].Mater Sci Eng C Mater Biol Appl,2017,80:75-87. [39] Lee EJ,Shin DS,Kim HE,et al.Membrane of hybrid chitosan-silica xerogel for guided bone regeneration[J].Biomaterials,2009,30(5):743-750. [40] Behring J,Junker R,Walboomers XF,et al.Toward guided tissue and bone regeneration:morphology,attachment,proliferation,and migration of cells cultured on collagen barrier membranes.A systematic review[J].Odontology,2008,96(1):1-11. [41] Quinlan E,Partap S,Azevedo MM,et al.Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair[J].Biomaterials,2015,52:358-366. [42] Vallet-Regi M,Ruiz-Hernandez E.Bioceramics:From Bone Regeneration to Cancer Nanomedicine[J].Adv Mater,2011,23(44):5177-5218. [43] Barber FA,Spenciner DB,Bhattacharyya S,et al.Biocomposite implants composed of poly(lactide-co-glycolide)/beta-tricalcium phosphate:Systematic review of imaging,complication,and performance outcomes[J].Arthroscopy,2017,33(3):683-689. [44] Ege D,Cameron R,Best S.The degradation behavior of nanoscale HA/PLGA and alpha-TCP/PLGA composites[J].Bioinspir Biomim Nan,2014,3(2):85-93. [45] Schiller C,Epple M.Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters[J].Biomaterials,2003,24(12):2037-2043. [46] Ducheyne P,De Meester P,Aernoudt E.Influence of a functional dynamic loading on bone ingrowth into surface pores of orthopedic implants[J].Journal of Biomedical Materials Research,1977,11(6):811-838. [47] Gutta R,Baker RA,Bartolucci AA,et al.Barrier membranes used for ridge augmentation:Is there an optimal pore size?[J].Journal of Oral and Maxillofacial Surgery,2009,67(6):1218-1225. [48] Takeuchi N,Machigashira M,Yamashita D,et al.Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration[J].Dent Mater J,2011,30(5):730-738. [49] Chahal S,Hussain FSJ,Kumar A,et al.Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering[J].Rsc Adv,2015,5(37):29497-29504. [50] Pitaluga LH,Souza MT,Zanotto ED,et al.Electrospun F18 bioactive glass/pcl-poly (epsilon-caprolactone)-membrane for guided tissue regeneration[J].Materials,2018,11(3):400. [51] Tai Hungyin,Chou Shiuhuey,Cheng Liaoping,et al.Asymmetric composite membranes from chitosan and tricalcium phosphate useful for guided bone regeneration[J].J Biomat Sci-Polym E,2012,23(9):1153-1170. [52] Ding Yaping,Li Wei,Correia A,et al.Electrospun polyhydroxybutyrate/poly(epsilon-caprolactone)/sol-gel-derived silica hybrid scaffolds with drug releasing function for bone tissue engineering applications[J].Acs Appl Mater Inter,2018,10(17):14540-14548. [53] Yu Shuang,Shi Jun,Liu Yutong,et al.A mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticle composite membrane for guided bone regeneration[J].Journal of Materials Chemistry B,2019,7(20):3279-3290. [54] Marins NH,Lee BEJ,e Silva RM,et al.Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering[J].Colloids and Surfaces B:Biointerfaces,2019,182:110386. [55] Sun Tuanwei,Yu Weilin,Zhu Yingjie,et al.Porous nanocomposite comprising ultralong hydroxyapatite nanowires decorated with zinc-containing nanoparticles and chitosan:Synthesis and application in bone defect repair[J].Chemistry-a European Journal,2018,24(35):8809-8821. [56] Chou J,Komuro M,Hao J,et al.Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration[J].Clin Oral Implants Res,2016,27(3):354-360. [57] Wei Yan,Zhang Xuehui,Song Yu,et al.Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration[J].Biomed Mater,2011,6(5):055008. [58] Jiang Liuyun,Xu Lijuan,Ma Bingli,et al.Effect of component and surface structure on poly(l-lactide-co-ε- caprolactone) (PLCA)-based composite membrane[J].Composites Part B:Engineering,2019,174:107031. [59] Limaye PB,Bowen WC,Orr AV,et al.Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium[J].Hepatology,2008,47(5):1702-1713. [60] Kim JH,Oh SH,Min HK,et al.Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model[J].J Biomed Mater Res A,2018,106(1):115-125. [61] Lee SH,Park YB,Moon HS,et al.The role of rhFGF-2 soaked polymer membrane for enhancement of guided bone regeneration[J].J Biomat Sci-Polym E,2018,29(7-9):825-843. [62] Wu Liang,Gu Yong,Liu Lili,et al.Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration[J].Biomaterials,2020,227:119555. [63] Shi Xuetao,Chen Song,Zhao Yihua,et al.Enhanced osteogenesis by a biomimic pseudo-periosteum-involved tissue engineering strategy[J].Adv Healthc Mater,2013,2(9):1229-1235. [64] Shi Xuetao,Fujie T,Saito A,et al.Periosteum-Mimetic Structures Made from Freestanding Microgrooved Nanosheets[J].Adv Mater,2014,26(20):3290-3296. [65] Qi Pan,Ohba S,Hara Y,et al.Fabrication of calcium phosphate-loaded carboxymethyl cellulose non-woven sheets for bone regeneration[J].Carbohydr Polym,2018,189:322-330. [66] Hoffman MD,Xie Chao,Zhang Xinping,et al.The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing[J].Biomaterials,2013,34(35):8887-8898. [67] Becker W,Becker BE,Mellonig J,et al.A prospective multi-center study evaluating periodontal regeneration for Class II furcation invasions and intrabony defects after treatment with a bioabsorbable barrier membrane:1-year results[J].J Periodontol,1996,67(7):641-649. [68] Matsuo A,Chiba H,Takahashi H,et al.Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction[J].Odontology,2010,98(1):85-88. [69] Amano Y,Ota M,Sekiguchi K,et al.Evaluation of a poly-l-lactic acid membrane and membrane fixing pin for guided tissue regeneration on bone defects in dogs[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2004,97(2):155-163. [70] Dziadek M,Zagrajczuk B,Menaszek E,et al.Poly(epsilon-caprolactone)-based membranes with tunable physicochemical,bioactive and osteoinductive properties[J].J Mater Sci,2017,52(22):12960-12980. [71] Bhardwaj N,Kundu SC.Electrospinning:A fascinating fiber fabrication technique[J].Biotechnol Adv,2010,28(3):325-347. [72] Ding Yaping,Roether JA,Boccaccini AR,et al.Fabrication of electrospun poly (3-hydroxybutyrate)/poly (epsilon-caprolactone)/silica hybrid fibermats with and without calcium addition[J].Eur Polym J,2014,55:222-234. [73] Yin Anlin,Li Jiukai,Bowlin GL,et al.Fabrication of cell penetration enhanced poly (L-lactic acid-co-epsilon-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning[J].Colloid Surface B,2014,120:47-54. [74] Yu Jiashing,Lee Anrei,Lin Weihan,et al.Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering[J].Tissue Eng Part A,2014,20(13-14):1896-1907. [75] Sun Fuhua,Chen Jie,Jin Shue,et al.Development of biomimetic trilayer fibrous membranes for guided bone regeneration[J].Journal of Materials Chemistry B,2019,7(4):665-675. [76] Zhang Kuihua,Zheng Honghao,Liang Su,et al.Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth[J].Acta Biomater,2016,37:131-142. [77] Liao Susan,Nguyen LT,Ngiam M,et al.Biomimetic nanocomposites to control osteogenic differentiation of human mesenchymal stem cells[J].Adv Healthc Mater,2014,3(5):737-751. [78] De-paula MMM,Afewerki S,Viana BC,et al.Dual effective core-shell electrospun scaffolds:Promoting osteoblast maturation and reducing bacteria activity[J].Materials Science & Engineering C-Materials for Biological Applications,2019,103:109778. [79] Kang MS,Kim JH,Singh RK,et al.Therapeutic-designed electrospun bone scaffolds:Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors[J].Acta Biomaterialia,2015,16:103-116. [80] Shen Yanbing,Tu Tian,Yi Bingcheng,et al.Electrospun acid-neutralizing fibers for the amelioration of inflammatory response[J].Acta Biomater,2019,97:200-215. [81] Hasan A,Waibhaw G,Saxena V,et al.Nano-biocomposite scaffolds of chitosan,carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications[J].International Journal of Biological Macromolecules,2018,111:923-934. [82] Wang Shige,Zhao Yili,Shen Mingwu,et al.Electrospun hybrid nanofibers doped with nanoparticles or nanotubes for biomedical applications[J].Ther Deliv,2012,3(10):1155-1169. [83] Zhang Heng,Xia Jiyi,Pang Xianlun,et al.Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2017,73:537-543. [84] Peng Fei,Shaw MT,Olson JR,et al.Hydroxyapatite needle-shaped particles/poly(l-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties[J].J Phys Chem C,2011,115(32):15743-15751. [85] Schiffman JD,Schauer CL.A review:Electrospinning of biopolymer nanofibers and their applications[J].Polym Rev,2008,48(2):317-352. [86] Martins A,Araujo JV,Reis RL,et al.Electrospun nanostructured scaffolds for tissue engineering applications[J].Nanomedicine-UK,2007,2(6):929-942. [87] Leal AI,Caridade SG,Ma JL,et al.Asymmetric PDLLA membranes containing Bioglass (R) for guided tissue regeneration:Characterization and in vitro biological behavior[J].Dent Mater,2013,29(4):427-436. [88] Li Jidong,Zuo Yi,Cheng Xianmiao,et al.Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure[J].J Mater Sci-Mater Med,2009,20(5):1031-1038. [89] Nublat C,Braud C,Garreau H,et al.Ammonium bicarbonate as porogen to make tetracycline-loaded porous bioresorbable membranes for dental guided tissue regeneration:failure due to tetracycline instability[J].J Biomat Sci-Polym E,2006,17(12):1333-1346. [90] Caridade SG,Merino EG,Martins GV,et al.Membranes of poly(DL-lactic acid)/Bioglass (R) with asymmetric bioactivity for biomedical applications[J].J Bioact Compat Polym,2012,27(5):429-440. [91] Kalitheertha TJT,Nik MNAN,Abdul KMR.In vitro degradation of triple layered poly (lactic-co-glycolic acid) composite membrane composed of nanoapatite and lauric acid for guided bone regeneration applications[J].Materials Chemistry and Physics,2019,221:501-514. [92] Hong Hua,Wei Jie,Liu Changsheng.Development of asymmetric gradational-changed porous chitosan membrane for guided periodontal tissue regeneration[J].Compos Part B-Eng,2007,38(3):311-316. [93] Tu Ying,Chen Chen,Li Yubao,et al.Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration[J].Biomed Mater Eng,2017,28(3):223-233. [94] Galea L,Bohner M,Thuering J,et al Control of the size,shape and composition of highly uniform,non-agglomerated,sub-micrometer beta-tricalcium phosphate and dicalcium phosphate platelets[J].Biomaterials,2013,34(27):6388-6401. [95] Zou Jianpeng,Zhou Zhihua,Ruan Jianming,et al.Fabrication of degradable bone-like substitutes based on poly-L-lactide and -tricalcium Phosphate[J].J Macromol Sci B,2010,49(4):781-790. [96] Huang Yan,Liu Debao,Anguilano L,et al.Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1 beta-TCP composite[J].Mater Sci Eng C Mater Biol Appl,2015,54:120-132. [97] Ma Fengcang,Chen Sai,Liu Ping,et al.Improvement of beta-TCP/PLLA biodegradable material by surface modification with stearic acid[J].Mater Sci Eng C Mater Biol Appl,2016,62:407-413. [98] Jiang Liuyan,Xiong Chengdong,Chen Dongliang,et al.Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite[J].Appl Surf Sci,2012,259:72-78. [99] Kobayashi S,Nagao R.Effect of surface modification of beta-tricalcium phosphate on mechanical properties of poly(L-lactic acid) composites[J].Adv Compos Mater,2015,24(5):467-480. [100] Chen Jyh-ping,Chen Shih-hsien,Lai Guo-jyun.Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture[J].Nanoscale Res Lett,2012,7:1-11. [101] Tiaw KS,Teoh SH,Chen R,et al.Processing methods of ultrathin poly(epsilon-caprolactone) films for tissue engineering applications[J].Biomacromolecules,2007,8(3):807-816. [102] Lee SJ,Park YJ,Park SN,et al.Molded porous poly (L-lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release[J].Journal of Biomedical Materials Research,2001,55(3):295-303. [103] Fu Li,Wang Zhanfeng,Dong Shujun,et al.Bilayer poly(lactic-co-glycolic acid)/nano-hydroxyapatite membrane with barrier function and osteogenesis promotion for guided bone regeneration[J].Materials,2017,10(3):257. [104] Kausar A.Phase inversion technique-based polyamide films and their applications:A comprehensive review[J].Polym-Plast Technol,2017,56(13):1421-1437. [105] Tsui YK,Gogolewski S.Microporous biodegradable polyurethane membranes for tissue engineering[J].J Mater Sci-Mater Med,2009,20(8):1729-1741. [106] Thurmer MB,Poletto P,Marcolin M,et al.Effect of non-solvents used in the coagulation bath on morphology of PVDF membranes[J].Mater Res-Ibero-Am J,2012,15(6):884-890. [107] Xing Qi,Qian Zichen,Kannan B,et al.Osteogenic differentiation evaluation of an engineered extracellular matrix based tissue sheet for potential periosteum replacement[J].ACS Appl Mater Interfaces,2015,7(41):23239-23247. [108] Uchiyama H,Yamato M,Sasaki R,et al.In vivo 3D analysis with micro-computed tomography of rat calvaria bone regeneration using periosteal cell sheets fabricated on temperature-responsive culture dishes[J].J Tissue Eng Regen Med,2011,5(6):483-490. [109] Zhao Lin,Zhao Junli,Wan Lin,et al.The study of the feasibility of segmental bone defect repair with tissue- engineered bone membrane:a qualitative observation[J].Strategies Trauma Limb Reconstr,2008,3(2):57-64. [110] Rapp SJ,Jones DC,Gerety P,et al.Repairing critical-sized rat calvarial defects with progenitor cell-seeded acellular periosteum:A novel biomimetic scaffold[J].Surgery,2012,152(4):595-605. [111] Ren L,Kang Y,Browne C,et al.Fabrication,vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects[J].Bone,2014,64:173-182. [112] Mouthuy PA,El-Sherbini Y,Cui Z,et al.Layering PLGA-based electrospun membranes and cell sheets for engineering cartilage-bone transition[J].J Tissue Eng Regen Med,2016,10(4):E263-E274. [113] Zhi Zhenya,Xing Fei,Chen Long,et al.Application of cell sheet technology in bone and cartilage tissue engineering[J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2018,32(2):237-241. |
[1] |
Meng Qiaoling, Shen Zhijia, Chen Zhongzhe, Nie Zhiyang. Design and Research of Bionic Hand Exoskeleton Based on Flexible Hinge[J]. Chinese Journal of Biomedical Engineering, 2020, 39(5): 557-565. |
[2] |
Zhang Yifan, Xu Mingen, Wang Ling, Zhang He. Coaxial 3D Bioprinting of Vascular Tissue Engineering Scaffolds forPromoting Endothelial Cell Growth[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 206-214. |
|
|
|
|