|
|
Biomechanical Study of Orthotic Insoles for Flatfoot Patients with Midfoot Arthritis |
Zhang Haowei*, Yang Junyan, Liu Ying, Chen Liang |
College of Medical Instrument and Food Engineering University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract In order to study the effect of orthotic insoles with different structure and material stiffness on plantar stress concentration and internal articular cartilage and fascia stress of flatfoot patients with midfoot arthritis, based on the finite element analysis and orthogonal experimental design, the finite element model of patient's foot and orthotic insole was established by using CT image data. A footscan system was used to measure the stress of plantar regions during stance phase to verify the accuracy of the simulation results. The effect of orthotic insoles was analyzed and compared by finite element results. Results indicated that the orthotic insole with 30 mm arch height, 5 degree wedge angle and 1 MPa stiffness had the best effect. Compared with the stresses barefoot, the surface and internal stresses of heel and metatarsal areas decreased by 62.5% (from 0.152 MPa to 0.057 MPa) and 77.9% (from 0.245 MPa to 0.054 MPa), respectively. At the same time, the surface and internal stresses of the metatarsal area decreased by 56.0% (from 0.125 MPa to 0.055 MPa) and 72.9% (from 0.192 MPa to 0.052 MPa), respectively. Compared with ordinary contact insoles, the stress distribution of sole is more uniform, and the stress of scaphoid wedge articular cartilage and fascia is less. The results provided data basis for the design of orthotic insoles with compound action under this complex disease.
|
Received: 14 June 2019
|
|
|
|
|
[1] 石晓明, 于占革. 骨关节炎发病机制的研究进展[J]. 中华临床医师杂志(电子版), 2013, 12(24):284-286. [2] 钱春美, 沈艳婷, 袁秀荣, 等. 骨性关节炎研究进展[J]. 吉林中医药, 2016, 36(5):538-540. [3] Rao S, Baumhauer JF, Becica L, et al. Shoe Inserts alter plantar loading and function in patients with midfoot arthritis[J]. Journal of Orthopaedic and Sports Physical Therapy, 2009, 39(7):522-531. [4] 孔德刚, 高虹, 王璐. 扁平足与正常足男大学生足底压力及步态特征比较[J]. 中国学校卫生, 2013, 34(6):680-682, 685. [5] 张旻, 马峥, 江澜, 等.不同外侧楔形矫形鞋垫对内侧间室膝骨性关节炎患者步态的影响[J].中国康复, 2015(1):61-64. [6] 苏宏伦, 郭俊超, 莫中军, 等.个性化扁平足矫形鞋垫的生物力学研究[J]. 医用生物力学, 2016, 31(6):490-494. [7] Cheung JT, Zhang M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method [J]. Med Eng Phys, 2008, 30(3): 269-277. [8] Cavanagh PR, Shiang TY. Approaches to finite element analysis of the foot-shoe interface in diabetic patients[J]. Journal of Biomechanics, 1993, 26(3): 323-330 [9] Chen WP, Tang FT, Ju CW. Stress distribution of the foot during mid-stance to push-off in barefoot gait: A 3-D finite element analysis[J]. Clinical Biomechanics, 2001, 16(7): 614-620. [10] Fontanella CG, Carniel EL, Forestiero A, et al. Investigation of the mechanical behaviour of the foot skin[J]. Skin Research and Technology, 2014, 20(4): 445-452. [11] Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint [J].Foot Ankle, 1988, 8:234-242. [12] Morales-Orcajo E, Bayod J, Casas EB. Computational foot modeling: Scope and applications[J]. Archives Comput Methods Eng, 2016, 23(3):389-416. [13] Lemmon D, Shiang TY, Hashmi A, et al. The effect of insoles in therapeutic footwear: A finite element approach[J]. J Biomech, 1997, 30(6):615-620. [14] Reeves ND, Maganaris CN, Ferretti G, et al. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures[J]. J Appl Physiol, 2005, 98(6):2278-2286. [15] Cheung JT, Zhang M, An KN. Effect of achilles tendon loading on plantar fascia tension in the standing foot [J]. Clinical Biomechanics, 2006, 2(21):194-203. [16] Gefen A, Megido-Ravid M, Itzchak Y, et al. Biomechanical analysis of the three-dimensional foot structure during gait: A basic tool for clinical applications[J]. J Biomech Eng, 2000, 122(6):630-639. [17] Dai XQ, Li Y, Zhang M, et al. Effect of sock on biomechanical responses of foot during walking [J]. Clin Biomech, 2006, 21(3): 314-321. [18] 中国国家标准化管理委员会. GB/T 3903.37—200鞋类衬里和内垫试验方法静摩擦力[S]. 北京:中国标准出版社, 2009. [19] Barrett JD. Taguchi's quality engineering handbook [J]. Technometrics, 2007, 49(2):224-225. [20] 李云雁, 胡传荣. 试验设计与数据处理[M](第2版). 北京: 化学工业出版社, 2016. [21] 李鹏. 基于3D打印扁平足个性化矫正鞋垫的设计及其对平衡能力的影响[D].镇江:江苏大学, 2017. [22] 励建安, 孟殿怀. 步态分析的临床应用[J]. 中华物理医学与康复杂志, 2006(7):500-503. [23] 夏域昆. 青少年扁平足与正常足的足底压力特征比较分析[D].吉林: 吉林大学, 2018. [24] 龚禹琨. 大学生扁平足脚型研究及矫正鞋垫的研制[D]. 西安:陕西科技大学, 2012. [25] Fernandez JW, UL Haque MZ, Hunter PJ, et al. Mechanics of the foot Part 1: A continuum framework for evaluating soft tissue stiffening in the pathologic foot [J]. Int J Numer Method Biomed Eng, 2012, 28(10): 1056-1070. [26] Kerrigan DC, Lelas JL, Goggins J, et al. Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis.[J]. Arch Phys Med Rehabil, 2002, 83(7):889-893. [27] Cheung JTM, Zhang M. Finite element modeling of the human foot and footwear[C]//ABAQUS Users' Conference. Boston; 2006: 145-158. |
[1] |
Dong Ziqiang, Zhao Gaiping, Bi Houhai, Zhao Qinghua, Wang Hongjie. Finite Element Analysis of Posterior Atlantoaxial Fixationfor Type II Odontoid Process Fracture with High-Riding Vertebral Artery[J]. Chinese Journal of Biomedical Engineering, 2020, 39(4): 459-465. |
[2] |
Zhang Haowei, Chen Liang, Yang Junyan, Liu Ying, Zheng Yongjun. Biomechanical Study of Heel Pain During Push-off Period Based on Finite Element Method[J]. Chinese Journal of Biomedical Engineering, 2020, 39(2): 190-196. |
|
|
|
|