Application and Research Development of Spatial Filtering Method in Brain-Computer Interfaces
Wang Tao1, Ke Yufeng2#*, Wang Ningci1, Liu Wentao2, An Xingwei2, Ming Dong1,2#*
1(School of Precision Instruments and Optoelectronics Engineering, Tianjin University 300072, China) 2(Academy of Medical Engineering and Translational Medicine, Tianjin University. 300072, China)
Abstract:With the development of brain-computer interface (BCI) technology, it has become a hot research topic to improve the classification accuracy of BCI system by optimizing data processing algorithms. In recent years, in a variety of BCI paradigms, spatial filtering has been found to improve the signal-to-noise ratio of EEG signals and optimize feature extraction, thus improving the classification accuracy of BCIs. Therefore, spatial filtering has an important application value in EEG-based BCIs. This paper reviewed the commonly used spatial filtering methods for EEG signal processing in BCIs, including basic spatial filters, spatial filters for EEG preprocessing and feature dimensionality reduction, and spatial filters used for feature extraction in BCIs based on induced rhythms and evoked potentials. Finally, we summarized the current problems and future developments of spatial filtering methods for EEG in BCIs.
王韬, 柯余峰, 王宁慈, 刘文陶, 安兴伟, 明东. 空间滤波方法在脑-机接口中的应用及研究进展[J]. 中国生物医学工程学报, 2019, 38(5): 599-608.
Wang Tao, Ke Yufeng, Wang Ningci, Liu Wentao, An Xingwei, Ming Dong. Application and Research Development of Spatial Filtering Method in Brain-Computer Interfaces. Chinese Journal of Biomedical Engineering, 2019, 38(5): 599-608.
[1] Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: A review of the first international meeting [J]. IEEE Trans Rehabil Eng, 2000, 8(2): 164-173. [2] Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113(6): 767-791. [3] Curran EA, Stokes MJ. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems [J]. Brain, 2003, 51(3): 326-336. [4] Blankertz B, Losch F, Krauledat M, et al. The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects [J]. IEEE Trans Biomed Eng, 2008, 55(10): 2452-2462. [5] McFarland DJ, McCane LM, David SV, et al. Spatial filter selection for EEG-based communication [J]. Electroencephalogr Clin Neurophysiol, 1997, 103(3): 386-394. [6] Cohen MX. Comparison of different spatial transformations applied to EEG data: A case study of error processing [J]. International Journal of Psychophysiology, 2015, 97(3): 245-257. [7] Comon P. Independent component analysis, a new concept [J]. Signal Processing, 1994, 36(3): 287-314. [8] Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Comput, 1995, 7(6): 1129-1159. [9] Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis [J]. Neural Computation, 1997, 9(7): 1483-1492. [10] 洪波, 潘映辐. ICA 在视觉诱发电位的少次提取与波形分析中的应用 [D]. 北京: 清华大学, 2000. [11] Cardoso JF. Blind signal separation: Statistical principles [J]. Proceedings of the IEEE, 1998, 86(10): 2009-2025. [12] Mammone N, La Foresta F, Morabito FC. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA [J]. IEEE Sensors Journal, 2012, 12(3): 533-542. [13] Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines [J]. Expert Systems with Applications, 2010, 37(12): 8659-8666. [14] Costa JC, Da-Silva PJ, Almeida RM, et al. Validation in principal components analysis applied to EEG data [J]. Comput Math Methods Med, 2014, 2014(2014): 1-10. [15] Rao RP. Brain-computer interfacing: An introduction [M]. Cambridge: Cambridge University Press, 2013. [16] Jasper H, Penfield W. Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus [J]. Archiv für Psychiatrie und Nervenkrankheiten, 1949, 183(1-2): 163-174. [17] Wolpaw J, Wolpaw EW. Brain-computer interfaces: Principles and practice [M]. Oxford: OUP,2012:101-103. [18] 明东, 王坤, 何峰, 等. 想象动作诱发生理信息检测及其应用研究: 回顾与展望 [J]. 仪器仪表学报, 2014, 35(9): 1921-1931. [19] Chin ZY, Ang KK, Wang C, et al. Multi-class filter bank common spatial pattern for four-class motor imagery BCI [C] //The 31st Annual International Conference of the IEEE EMBS. Minneapolis: IEEE, 2009: 262-268. [20] Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis [J]. IEEE Signal Processing Magazine, 2008, 25(1): 41-56. [21] Lemm S, Blankertz B, Curio G, et al. Spatio-spectral filters for improving the classification of single trial EEG [J]. IEEE Trans Biomed Eng, 2005, 52(9): 1541-1548. [22] Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [J]. Clinical Neurophysiology, 1999, 110(5): 787-798. [23] Blanchard G, Blankertz B. BCI Competition 2003-Data set IIa: Spatial patterns of self-controlled brain rhythm modulations [J]. IEEE Trans Biomed Eng, 2004, 51(6): 1062-1066. [24] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [J]. IEEE Trans Rehabil Eng, 2000, 8(4): 441-446. [25] Xu W, Guan C, Siong C E, et al. High accuracy classification of EEG signal[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge: IEEE, 2004, 2: 391-394. [26] Khan YU, Sepulveda F. Brain–computer interface for single-trial EEG classification for wrist movement imagery using spatial filtering in the gamma band [J]. IET Signal Processing, 2010, 4(5): 510-517. [27] Navarro I, Hubais B, Sepulveda F. A comparison of time, frequency and ICA based features and five classifiers for wrist movement classification in EEG signals[C]// The 27th Annual Conference of the IEEE Engineering in Medicine and Biology. Shanghai: IEEE, 2006: 2118-2121. [28] Wu D, King JT, Chuang CH, et al. Spatial filtering for EEG-based regression problems in brain–computer interface (BCI) [J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 771-781. [29] Guger C, Ramoser H, Pfurtscheller G. Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) [J]. IEEE Trans Rehabil Eng, 2000, 8(4): 447-456. [30] Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern (SBCSP) for brain-computer interface[C]// The 3rd International IEEE/EMBS Conference on Neural Engineering. Kohala Coast: IEEE, 2007: 204-207. [31] Dornhege G, Blankertz B, Krauledat M, et al. Combined optimization of spatial and temporal filters for improving brain-computer interfacing [J]. IEEE Trans Biomed Eng, 2006, 53(11): 2274-2281. [32] Zhang Y, Zhou G, Jin J, et al. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface [J]. Journal of neuroscience methods, 2015, 255(2015): 85-91. [33] Ang K K, Chin Z Y, Zhang H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]// 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Hong Kong: IEEE, 2008: 2390-2397. [34] Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method [J]. Journal of Neural Engineering, 2009, 6(4): 1-6. [35] Spuler M, Walter A, Rosenstiel W, et al. Spatial filtering based on canonical correlation analysis for classification of evoked or event-related potentials in EEG data [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(6): 1097-1103. [36] Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs [J]. IEEE Trans Biomed Eng, 2006, 53(12 Pt 2): 2610-2614. [37] Chen X, Wang Y, Nakanishi M, et al. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller[C]//The 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2014: 3993-3996. [38] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface [J]. Proceedings of the National Academy of Sciences, 2015, 112(44): E6058-E6067. [39] Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs [J]. IEEE Trans Biomed Eng, 2006, 53(12 Pt 2): 2610-2614. [40] Zhang Y, Zhou G, Jin J, et al. SSVEP recognition using common feature analysis in brain-computer interface [J]. Journal of Neuroscience Methods, 2015, 244(2015): 8-15. [41] Zhang Y, Zhou GX, Jin J, et al. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis [J]. International Journal of Neural Systems, 2014, 24(4): 1-8. [42] Tong J, Zhu D. Multi-phase cycle coding for SSVEP based brain-computer interfaces [J]. Biomed Eng Online, 2015, 14(1): 1-5. [43] Safieddine D, Kachenoura A, Albera L, et al. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches [J]. Eurasip Journal on Advances in Signal Processing, 2012, 2012(127): 1-15. [44] Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface [J]. Journal of Neural Engineering, 2015, 12(4): 1-10. [45] Nakanishi M, Wang Y, Wang YT, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials [J]. PLoS ONE, 2015, 10(10): 1-18. [46] Rivet B, Souloumiac A, Attina V, et al. xDAWN algorithm to enhance evoked potentials: application to brain–computer interface [J]. IEEE Transactions on Biomedical Engineering, 2009, 56(8): 2035-2043. [47] Golub GH, loan CV. Matrix computations [M]. Baltimore: JHU Press, 1996:546-548. [48] Cecotti H, Rivet B, Congedo M, et al. A robust sensor-selection method for P300 brain–computer interfaces [J]. Journal of Neural Engineering, 2011, 8(1): 1-6. [49] Roy R N, Bonnet S, Charbonnier S, et al. A comparison of ERP spatial filtering methods for optimal mental workload estimation[C]// Andrew L, eds. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE, 2015: 7254-7257. [50] Tanaka H, Katura T, Sato H. Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data [J]. Neuroimage, 2013, 64: 308-327. [51] Nakanishi M, Wang YJ, Chen XG, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis [J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1): 104-112. [52] Tanaka H, Katura T, Sato H. Task-related oxygenation and cerebral blood volume changes estimated from NIRS signals in motor and cognitive tasks [J]. Neuroimage, 2014, 94(2014): 107-119. [53] Xu M, Xiao X, Wang Y, et al. A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli [J]. 2018, 65(5): 1166-1175.