网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年5月2日 星期五  
文章快速检索
中国生物医学工程学报  2019, Vol. 38 Issue (2): 166-175    DOI: 10.3969/j.issn.0258-8021.2019.02.005
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于纵向不完整数据联合深度集成回归预测阿尔茨海默病临床评分
杨梦雅1, 侯雯2, 杨鹏1, 邹文斌2, 汪天富1, 雷柏英1*
1.(深圳大学医学部生物医学工程学院,广东省生物医学信息检测和超声成像重点实验室,广东 深圳 518060)
2.(深圳大学信息工程学院,广东 深圳 518060)
Joint and Deep Ensemble Regression of Clinical Scores for Alzheimer′s Disease Using Longitudinal andIncomplete Data
Yang Mengya1, Hou Wen2, Yang Peng1, Zou Wenbin2, Wang Tianfu1, Lei Baiying1*
1.(School of Biomedical Engineering, Health Science Center, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, Guangdong, China)
2.(School of Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China)
全文: PDF (6827 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 阿尔茨海默病(AD)是一种进行性神经系统退行疾病,具有不可逆性,需要医生密切监测患者的病情,并根据病情发展及时调整治疗计划。研究表明,临床评分是医生进行疾病评估的最有效依据,且磁共振成像(MRI)数据也非常适合用于预测阿尔茨海默病患者的临床评分。传统研究中,学者们大多是基于单一时间点的MRI数据进行临床评分预测。提出建立一个探索MRI数据与临床评分之间关系的模型,并使用纵向MRI数据预测未来时间点的临床评分。该模型包含3个部分:首先基于相关熵正则化联合学习进行特征选择;然后基于深度多项式网络进行特征编码;最后利用支持向量回归。回归过程在两种情形下进行,情形1是使用基线数据预测未来时间点的临床评分,情形2是结合被测时间点之前的所有数据预测该时间点的临床评分。与此同时,情形2还可填补缺失评分,解决了数据的不完整问题。在情形1中,通过所提出的模型对未来5个不同时间点的临床评分进行预测,获得的平均绝对误差值为2.01、2.06、2.06、2.27、2.00以及皮尔森相关系数值为0.70、0.69、0.56、0.65、0.67。在情形2中,所提出的模型在未来4个不同时间点获得的平均绝对误差值为0.14、0.10、0.09、0.08以及皮尔森相关系数值为0.72、0.75、0.78、0.74。通过以上实验证明,所提出的回归框架不仅可准确描述MRI数据与评分之间的关系,而且可以有效地预测纵向评分。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨梦雅
侯雯
杨鹏
邹文斌
汪天富
雷柏英
关键词 阿尔茨海默病纵向评分预测相关熵联合学习深度多项式网络    
Abstract:Alzheimer′s disease (AD) is a neurodegenerative disease with an irreversible and progressive process, and thus close monitoring is essential for making adjustments in the treatment plan. Since clinical scores can indicate the disease status effectively, the prediction of the scores based on the magnetic resonance imaging (MRI) data is highly desirable. Different from previous studies at a single time point, we proposed to build a model to explore the relationship between MRI data and scores, thereby predicting longitudinal scores at future time points from the corresponding MRI data. The model incorporated three parts, correntropy regularized joint learning based features election, deep polynomial network based feature encoding and finally, support vector regression. The regression process was carried out for two scenarios. One was desirable in practice, which is to use baseline data for predictions at future time points, and the other was to further improve the prediction accuracy, which was to combine all the previous data for the prediction at the next time point. Meanwhile, the missing scores were filled in the second scenario to address the incompleteness presented in the data. We predicted longitudinal scores at future time points by the proposed model. Besides, the corresponding average absolute error and Pearson correlation were calculated to estimate the experimental results. In scenario 1, the average absolute value was 2.01, 2.06, 2.06, 2.27, 2.00 and the Pearson correlation coefficient was 0.70, 0.69, 0.56, 0.65, 0.67. In the scenario 2, the average absolute error was 0.14, 0.10, 0.09, 0.08 and the Pearson correlation coefficient is 0.72, 0.75, 0.78, 0.74. The simulation results validated that the proposed model described accurately the relationship between MRI data and scores, and thus was effective in predicting longitudinal scores.
Key wordsAlzheimer′s disease    longitudinal score prediction    correntropy    joint learning    deep polynomial network
收稿日期: 2017-10-16     
PACS:  R318  
基金资助:广东省自然科学基金(2017A030313377)
通讯作者: leiby@szu.edu.cn   
引用本文:   
杨梦雅, 侯雯, 杨鹏, 邹文斌, 汪天富, 雷柏英. 基于纵向不完整数据联合深度集成回归预测阿尔茨海默病临床评分[J]. 中国生物医学工程学报, 2019, 38(2): 166-175.
Yang Mengya, Hou Wen, Yang Peng, Zou Wenbin, Wang Tianfu, Lei Baiying. Joint and Deep Ensemble Regression of Clinical Scores for Alzheimer′s Disease Using Longitudinal andIncomplete Data. Chinese Journal of Biomedical Engineering, 2019, 38(2): 166-175.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2019.02.005     或     http://cjbme.csbme.org/CN/Y2019/V38/I2/166
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发