网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月3日 星期四  
文章快速检索
中国生物医学工程学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
一种用小波包变换提取眼电信号警觉度特征的方法
1 皖南医学院医学二系麻醉与影像设备学教研室,芜湖 241002
2 上海交通大学计算机科学与工程系仿脑计算与机器智能研究中心, 上海 200240
3 上海交通大学智能计算与智能系统教育部微软重点实验室, 上海 200240
4 上海交通大学上海市可扩展计算与系统重点实验室, 上海 200240
5 京都大学工学研究科机械工程与科学系,京都府 6293558,日本
A New Method of Extracting Vigilant Feature from Electrooculography Using Wavelet Packet Transform
1 The Teaching and Research Section of Anesthesia and Medical Imaging Equipments, Wannan Medical College, Wuhu, 241002,China
2 Center for Brainlike Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
3 MOEMicrosoft Key Lab for Intelligent Computing and Intelligent Systems, Shanghai Jiao Tong University, Shanghai 200240, China
4 Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China
5 Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University Kyoto 6293558, Japan
全文: PDF (1190 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 警觉度是指人集中注意力执行某项任务时所表现出的灵敏程度。为保证生产安全,很多岗位需要对工作人员的警觉度进行估计和预测,如高铁司机和危险品运输司机等。基于脑电和眼电等生理信号的警觉度估计与预测是警觉度研究的一个重要方向,如何提取眼电信号中的警觉度特征是该研究的核心问题之一。本研究应用小波包变换方法从水平眼电中提取不同频段能量的比值,以期找出高相关度的警觉度特征。探讨了水平眼电中16种不同的低高频分段的能量比特征,对特征分别进行了移动平均和线性动力系统去噪处理。实验表明,分段为(0~1.50 Hz)/(1.50~31.25 Hz)的能量比值与警觉度的相关系数最高。35组实验的相关系数平均值为0.742,标准差为0.151,比已有的慢速眼动、快速眼动以及眨眼等11种特征中最好特征的相关系数平均值提高了5.55%,标准差降低了6.62%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
高春芳1
2吕宝粮2
3
4*马家昕5
关键词 眼电信号警觉度警觉度特征小波包变换相关分析    
Abstract:Vigilance refers to the sensitivity when a person concentrates on executing an assignment. To ensure safety, vigilant estimation and prediction is necessary for many kinds of posts, such as highspeed railway drivers and dangerous goods transport drivers. The vigilant estimation and prediction based on physiological signals such as EEG and EOG is an important subject in vigilant research. How to get the best vigilant feature is one of the kernel problems. In this article, the wavelet packet transform was applied for extracting energy ratio in frequency domain from horizontal EOG in order to get the features closely related with vigilance. We discussed energy ratio features in 16 different segmentations and adopted moving average and linear dynamic system to denoise the acquired features. Experimental results show that the demarcation at (0~150 Hz)/(150~3125 Hz) is the best condition. From 35 data sets, the average correlation coefficient is 0742 and the standard deviation is 0151, which is better than the existing 11 features such as slow eye movement, rapid eye movement and blink. The average correlation coefficient increases 555% and the standard deviation decreases 662% than the best feature in the literature.
〖KH*2D〗
〖WTHZ〗Key words:〖WTBZ〗
Key wordsElectrooculography    vigilance    vigilant feature    wavelet packet transform    correlation analysis
    
基金资助:国家自然科学基金项目(90820018);国家重点基础研究发展(973)计划(2009CB320901)
引用本文:   
高春芳1,2吕宝粮2,3,4*马家昕5. 一种用小波包变换提取眼电信号警觉度特征的方法[J]. 中国生物医学工程学报, 2012, 31(5): 641-648.
GAO ChunFang1,2LV BaoLiang2,3,4*MA JiaXin5. A New Method of Extracting Vigilant Feature from Electrooculography Using Wavelet Packet Transform. journal1, 2012, 31(5): 641-648.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2012.05.001     或     http://cjbme.csbme.org/CN/Y2012/V31/I5/641
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发