网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年5月8日 星期四  
文章快速检索
中国生物医学工程学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于MOS和SAW传感器呼吸诊断肺癌的复合识别算法研究
1 浙江大学 生物传感器国家专业实验室,生物医学工程教育部重点实验室,生物医学工程系,杭州 310027
2 浙江大学医学院附属邵逸夫医院,杭州 310027
Research on Hybrid Recognition Algorithms of Lung Cancer Breath Diagnosis Based on MOS and SAW Sensors
1 Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
2 Zhejiang Sir Run Run Hospital,Zhejiang University,Hangzhou 310027, China
全文: PDF (1030 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 目前国际上有关肺癌的呼吸检测诊断方法越来越受到关注,其具有简便、快速、无创伤、无标记以及非接触等显著特点。在前期大量肺癌呼出气体挥发性有机物(VOCs)标志物研究的基础上,采用基于MOS-SAW传感器联用的电子鼻技术,分析27例肺癌患者和27例健康人呼出气体样本,并对数据进行处理和识别,设计PCA、PLS、LDA以及ANN等多种诊断方法,比较不同算法的识别结果。实验结果表明,采用的人工神经网络复合模型对肺癌和健康人群的识别灵敏度和特异性分别达到92.59%和88.89%。所提出的复合识别方法对于电子鼻快速诊断肺癌患者是有效的。通过呼出气体中冷凝物标志物的检测和复合诊断算法,将进一步提高通过呼吸气体标志物诊断的新型电子鼻仪器在临床诊断中的广泛应用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王怡珊1 王镝1 余凯1 王林1 赵聪1 邹莹畅1王平1*胡艳捷2 应可净2
关键词 电子鼻 呼出气体标志物 肺癌 呼吸诊断方法 模式识别
    
Abstract:The method of breath detection for lung cancer has gained growing interests in recent years. It is simple, fast, non-invasive, no need of marks and noncontact. Based on the lung cancer biomarkers obtained from the volatile organic compounds in breath samples of lung cancer patients and controls, we analyzed 27 breath samples of lung cancer patients and 27 breath samples of controls using MOS-SAW sensor coupling electronic nose technique. After preprocessing and analysis of the data, multiple methods, including PCA, LDA, PLS and ANN, were employed to establish the diagnosis models. And the discrimination results of these models were compared. It was showed that the ANN method had the best performance with the sensitivity of 92.59% and the specificity of 88.89%. So this method can be considered as a candidate one for the diagnosis of lung cancer through breath detection.
Key wordselectronic nose    exhaled breath biomarkers    lung cancer    breath diagnosis method
    
基金资助:国家自然科学基金重点项目仪器专项(81027003);教育部博士点基金(20100101110079);浙江大学基本科研业务费专项资助
引用本文:   
王怡珊王镝余凯王林赵聪邹莹畅1王平1*胡艳捷 应可净2
. 基于MOS和SAW传感器呼吸诊断肺癌的复合识别算法研究[J]. 中国生物医学工程学报, 2012, 31(1): 110-116.
WANG Yi ShanWANG DiYU KaiWANG Lin1   ZHAO Cong1 ZHOU YinChang1    WANG Ping1*. Research on Hybrid Recognition Algorithms of Lung Cancer Breath Diagnosis Based on MOS and SAW Sensors. journal1, 2012, 31(1): 110-116.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2012.01.017     或     http://cjbme.csbme.org/CN/Y2012/V31/I1/110
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发