Abstract:Leukocyte morphology with mixed attributes is a complex system with attribute multi-hierarchical relationship. The six-classification technology of leukocyte morphology can be achieved effectively by sufficient expression and variable level use of hierarchical attribute. A novel method of leukocyte morphology classification based on attribute multi-hierarchical relationship was proposed. The decision relationships and associated relationships of classification were obtained based on analysis of leukocyte morphology features attribute multi- hierarchical relationship. The classifier was established according to the relationships and reached an average classification accuracy of 95.98% significantly higher than the other 3 kinds of classical algorithm in a contrast experiment to a dataset of 952 hospital actual leukocyte images. Experimental results show that the method has a better classification performance, and also prove that attribute multi-hierarchical relationship of complex system has brilliant perspective on pattern recognition.
[1]魏宁康,杜元元. 注重外周血细胞形态学检查降低血液病漏诊和误诊[J]. 检验医学与临床,2013,10(9):1166-1167.
[2]Khashman A. Investigation of different neural models for blood cell type identification[J]. Neural Computing & Applications, 2012(21):1-7.
[3]Fu KS, Albus JE, Anderson RH. Syntactic pattern recognition and application [M]. New Jersey: PrenticeHall, 1982:152-164.
[4]傅京孙. 模式识别及其应用[M]. 北京:北京大学出版社,1990:20-28.
[5]Jaume G, Ernest V, Horst B. Feature selection on node statistics based embedding of graphs [J]. Pattern Recognition Letters, 2012, 33(15):1980-1990.
[6]Anand R. Revisioning the unification of syntax, semantics and statistics in shape analysis [J]. Pattern Recognition Letters, 2013,42(12): 2301-2314.
[7]Frank TA, Jason M,Kinser, et al., A neural bridge from syntactic to statistical pattern recognition [J]. Neural Networks, 1999, 12(3):519-526.
[8]Impoco G, Tuminello L, Fuca N. Segmentation of structural features in cheese micrographs using pixel statistics [J]. Computers and Electronics in Agriculture, 2011, 79(2):199-206.
[9]Slavakis K, Giannakis G, Mateos G. Modeling and optimization for big data analytics: (statistical) learning tools for our era of data deluge[J]. IEEE Signal Process Mag, 2014, 31: 18-31.
[10]Hong Wenxue,Yu Jianping,Cai Fu, et al. A new method of attribute reduction for decision formal context[J]. ICIC Express Letters Part B:Applications,2012,3(5): 1061-1068.
[11]郝连旺,洪文学,李婷. 基于属性层次关系的白细胞图像类间特异特征选取方法研究[J]. 生物医学工程学杂志,2014,31(6):1202-1206.
[12]郝连旺,洪文学. 基于多颜色空间特征融合的彩色白细胞图像识别[J]. 生物医学工程学杂志,2013,30(5):909-913.
[13]Ganter B,Wille R. Formal Concept Analysis:Mathematical Foundantions[M].New York: SpringerVerlag, 1999:42-65.
[14]Poelmans J, Elzinga P,Viaene S, et al. Formal concept analysis in knowledge discovery: a survey[J].Conceptual Structures: from Information to Intelligence,2010:139-153.
[15]Hong Wenxue, Li Shaoxiong, Yu Jianping, et al. A new approach of generation of structural partialordered attributes diagram [J]. ICIC Express Letters, 2012, 3(4):2035-2042.
[16]张勇. 彩色白细胞显微图像分析与识别[D]. 西安:西安交通大学,1999.
[17]汤学民,林学訚,何林. 白细胞图像自动识别系统的研究[J]. 生物医学工程学杂志,2007,24(6):1250-1255.
[18]周颖颖. 彩色白细胞图像的特征选择与分类识别[D]. 南京:东南大学,2006.