Abstract:Developing intelligent biomimetic eye is a new hot issue in the domain of robot visual control, which is based on neurophysiological mechanism of biological coordinated headeye movement during gaze shift. In this work, oculomotor characteristics of primates and its utility values were reviewed, and next, the worldwide research status and development direction of biomimetic eye from the view of visual control were summarized.Some new bionic ideas and policies were given as well, such as making use of physiology, bionics, control theory and interdisciplinary study to explore multidegreeoffreedom binocular biomimetic eye model, 3D head-eye coordinated control method, robot visual error compensation algorithms and adaptive patterns switching strategy of robot visual tracking.
[1]毛晓波. 仿生机器眼运动系统建模与控制研究[D]. 郑州: 郑州大学. 2011.
[2]Young LR, Stark L. Variable feedback experiments testing a sampled data model for eye tracking movements[J]. IEEE Transactions on Human Factors in Electronics,1963,4(1): 38-51.
[3]Robinson DA. Models of the saccadic eye movement control system[J]. Kybernetik, 1973,14(2): 71-83.
[4]Quaia C, Philippe L, Lance MO. Model of the control of saccades by superior colliculus and cerebellum[J]. J Neurophysiol, 1999,82: 999-1018.
[5]Robinson DA,Gordon JL,Gordon SE. A model of the smooth pursuit eye movement system [J]. Biological Cybernetics, 1986,55(1): 43-57.
[6]Lisberger SG, Morris EJ, Tychsen L. Visual motion processing and sensorymotor integration for smooth pursuit eye movements [J]. Annual Review of Neuroscience, 1987,10: 97-129.
[7]Deno DC, Keller EL, Crandall WF. Dynamical neural network organization of the visual pursuit system[J]. IEEE Transactions on Biomedical Engineering,1989,36(1): 85-92.
[8]Christopher B. Gaze controls with interactions and delays[J]. IEEE Transactions on Systems, Man, and Cybernetics. 1990,20(1): 518-527.
[9]Robinson DA,Gordon JL,Gordon SE. A model of the smooth pursuit eye movement system [J]. Biological Cybernetics, 1986, 55(1): 43-57.
[10]Lunghi F, Lazzari S, Magenes G. Neural adaptive predictor for visual tracking system[C] //Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Hong Kong: IEEE Press, 1998(3): 1389-1392.
[11]Rivlin E, Rotstein H, Zeevi YY. Twomode control: an oculomotorbased approach to tracking systems[J]. IEEE Transactions on Automatic Control, 1998,43(6): 833-842.
[12]Rivlin E, Rotstein H. Control of a camera for active vision: Foveal vision, smooth tracking and saccade[J]. International Journal of Computer Vision, 2000, 39(2):81-96.
[13]Jessica LW, Galiana HL. An internally switched model of ocular tracking with prediction[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(2): 186-193.
[14]Sophie dB, Marcus M, Graham B, et al. Quantitative analysis of catchup saccades during sustained pursuit[J]. J Neurophysiol, 2002,87(4): 1772-1780.
[15]Blohm G, Marcus M, Philippe L. Interaction between smooth anticipation and saccades during ocular orientation in darkness[J]. J Neurophysiol, 2003, 89: 1423-1433.
[16]Blohm G, Marcus M, Philippe L. Direct evidence for a position input to the smooth pursuit system[J]. J Neurophysiol, 2005, 94: 712-721.
[17]Burke MR, Barnes GR. Quantitative differences in smooth pursuit and saccadic eye movements[J]. Exp Brain Res, 2006,175(4): 596-608.
[18]Orban de Xivry JJ, Lefevre P. Saccades and pursuit: two outcomes of a single sensorimotor process[J]. Journal of Physiology, 2007, 584(1): 11-23.
[19]Erkelens CJ. A dual visuallocal feedback model of the vergence eye movement system[J]. Journal of Vision, 2011, 11(10):21, 1-14.
[20]Gomi H, Kawato M. Adaptive feedback control models of the vestibulocerebellum and spinocerebellum [J]. Biological Cybernetics, 1992,68(2): 105-114.
[21]Raymond J, Lisberger S. Neural learning rules for the vestibuloocular reflex[J]. Journal of Neuroscience, 1998,18(21): 9112-9129.
[22]Shibata T, Schaal S. Biomimetic gaze stabilization based on feedbackerrorlearning with nonparametric regression networks[J]. Neural Networks, 2001, 14(2): 201-216.
[23]Merfeld DM, Sukyung P, Claire GPF, et al. Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt[J]. J Neurophysiol, 2005,94: 186-198.
[24]Ramat S, Dominik S, David SZ. Interaural translational VOR: suppression, enhancement,and cognitive control[J]. J Neurophysiol, 2005,94: 2391-2402.
[25]Franchi E, Falotico E, Zambrano D, et al. A comparison between two bioinspired adaptive models of VestibuloOcular Reflex (VOR) implemented on the iCub robot[C] //2010 10th IEEERAS International Conference on Humanoid Robots. Nashville: IEEE Press, 2010: 251-256.
[26]Khojasteh E, Galiana HL. Modulation of vergence during the vestibuloocular reflex[C] //Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon: IEEE Press, 2007: 23-26.
[27]Ojima S, Yano S. Eye movement model with neural oscillators[C] //Proceedings of the IEEE International Conference on Neural Networks. Perth: IEEE Press, 1995: 2297-2302.
[28]May PJ, Porter JD. The laminar distribution of macaque tectobulbar and tectospinal neurons[J]. Visual Neuroscience, 1992,83): 257-276.
[29]Freedman EG, Sparks DL. Eyehead coordination during headunrestrained gaze shifts in rhesus monkeys[J]. Journal of Neurophysiology, 1997,77(5): 2328-2348.
[30]Freedman EG, Sparks DL. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: Evidence for a gaze displacement command[J]. Journal of Neurophysiology,1997,78(3): 1669-1690.
[31]Wang Xiaoxing, Jin Jesse, Jabri M. Neural network models for the gaze shift system in the superior colliculus and cerebellum[J]. Neural Networks, 2002,15: 811-832.
[32]RubioPerez MA, GalvezRuiz AL, SepulvedaGazquez M, et al. Review of the model of vertical gaze control[J]. Revista De Neurologia, 2011,53(8):477-482.
[33]Andreas AK, Adonis KM. Optimal control of gaze shifts[J]. The Journal of Neuroscience, 2009,29(24): 7723-7730.
[34]Saglam M, Lehnen N, Glasauer S. Optimal control of natural eyehead movements minimizes the impact of noise[J]. Journal of Neuroscience, 2011, 31(45): 16185-16193.
[35]Saeb S, Weber C, Triesch J. Learning the optimal control of coordinated eye and head movements[J]. PLoS Comput Biol, 2011, 7(11):1-12.
[36]Bechara BP, Gandhi NJ. Matching the oculomotor drive during headrestrained and headunrestrained gaze shifts in monkey[J]. J Neurophysiol, 2010, 104(2): 811-828.
[37]Freedman EG. Coordination of the eyes and head during visual orienting [J]. Exp Brain Res, 2008,190(4): 369-387.
[38]Engbert R, Mergenthaler K, Sinn P, et al. An integrated model of fixational eye movements and microsaccades [J]. Proceedings of the National Academy of Sciences of the United States of American,2011, 108(39): E765-E770.
[39]張暁林,川合拓郎,熊澤逸夫,等.両眼固視微動を用いた立体エッジ画像生成法[C] //高木幹雄. 第11回画像センシングシンポジウム講演論文集. 横滨: 画像センシング技術研究会, 2005:303-306.
[40]張暁林,若松秀俊. 両眼運動制御メカニズムの数学モデルと視軸制御システムの構築[J]. 日本ロボット学会誌,2002,[STHZ]20[STBZ](1): 89-97.
[41]Chan WWP, Galiana HL. A nonlinear model of the neural integrator improves detection of deficits in the human VOR[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5): 1012-1023.
[42]Alkan Y, Gohel S, Biswal BB. Functional connectivity in oculomotor movements[C] //Proceedings of the IEEE 36th Annual Northeast Bioengineering Conference. New York: IEEE Press, 2010:1-2.
[43]Hafed ZM, Krauzlis RJ. Similarity of superior colliculus involvement in microsaccade and saccade generation[J]. J Neurophysiol,2012, 107: 1904-1916.
[44]Schutz AC, Braun DI, Gegenfurtner KR, et al. Eye movements and perception: A selective review[J]. Journal of vision, 2011, 11(5):1-30.
[45]Farshadmanesh F, Byrne P, Keith GP, et al. Crossvalidated models of the relationships between neck muscle electromyography and threedimensional head kinematics during gaze behavior[J]. J Neurophysiol, 2011, 107(2): 573-590.
[46]邹海荣. 低空跟踪地面目标的机载云台运动仿生控制[D].上海:上海大学, 2007.
[47]黄素媚, 肖南峰. 仿人形机器人两眼运动模型和控制方法研究[J]. 系统仿真学报, 2005,17(9): 2065-2069.
[48]顾立忠,苏剑波.仿人机器人的头眼协调运动控制研究[J]. 机器人, 2008,30(2): 165-170.
[49]陈维毅, 杨桂通, 吴文周. 人体眼球的运动模型及相应的动力学方程组[J]. 中国生物医学工程学报, 2000,19(3): 266-271.
[50]Kardamakis AA, Grantyn A, Moschovakis AK. Neural network simulations of the primate oculomotor system. V. Eye–head gaze shifts [J]. Biol Cybern, 2010,102(3): 209-225.
[51]李恒宇, 罗均, 李超, 等. 基于眼球前庭动眼反射的机器人视觉误差主动补偿方法[J]. 机器人, 2011, 33(1):191-197.