Single-Lead ECG Chest Band Based on Multi-Layer Screen Printing Flexible Dry Electrode
Jiang Yuchen1, Zhang Yue1, Cha Xingzeng1, Su Ye2, Lai Dakun1*
1(School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China) 2(Department of Cardiovascular Ultrasound and Cardiac Function, Sichuan Provincial People′sHospital, Chengdu 610072, China)
姜宇琛, 张月, 茶兴增, 苏叶, 赖大坤. 基于多层丝网印刷柔性生物电干电极的单导联心电胸带[J]. 中国生物医学工程学报, 2023, 42(5): 636-640.
Jiang Yuchen, Zhang Yue, Cha Xingzeng, Su Ye, Lai Dakun. Single-Lead ECG Chest Band Based on Multi-Layer Screen Printing Flexible Dry Electrode. Chinese Journal of Biomedical Engineering, 2023, 42(5): 636-640.
[1] Myers A C, Huang H, Zhu Y. Wearable silver nanowire dry electrodes for electrophysiological sensing[J]. Rsc Advances, 2015, 5(15): 11627-11632. [2] Choi S B, Oh MS, Han CJ, et al. Conformable, thin, and dry electrode for electrocardiography using composite of silver nanowires and polyvinyl butyral[J]. Electronic Materials Letters, 2019, 15: 267-277. [3] Yun I, Jeung J, Lim H, et al. Stable bioelectric signal acquisition using an enlarged surface-area flexible skin electrode[J]. ACS Applied Electronic Materials, 2021, 3(4): 1842-1851. [4] Sun B, McCay RN, Goswami S, et al. Gas‐permeable, multifunctional on‐skin electronics based on laser‐induced porous graphene and sugar‐templated elastomer sponges[J]. Advanced Materials, 2018, 30(50): 1804327. [5] Xu X, Liu Z, He P, et al. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring[J]. Journal of Physics D: Applied Physics, 2019, 52(45): 455401. [6] Ying B, Wu Q, Li J, et al. An ambient-stable and stretchable ionic skin with multimodal sensation[J]. Materials Horizons, 2020, 7(2): 477-488. [7] Webster JG. Medical Instrumentation: Application and Design [M]. New York: John Wiley & Sons, 2009. [8] Chi YM, Jung TP, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: Methodological review[J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 106-119. [9] Lai D, Bu Y, Su Y, et al. A flexible multilayered dry electrode and assembly to single-lead ECG patch to monitor atrial fibrillation in a real-life scenario [J]. IEEE Sensors Journal, 2020, 22: 12295-12306. [10] Di Rienzo M, Vaini E, Lombardi P. Development of a smart garment for the assessment of cardiac mechanical performance and other vital signs during sleep in microgravity[J]. Sensors and Actuators A: Physical, 2018, 274: 19-27. [11] Cho H, Lee JH. A study on the optimal positions of ECG electrodes in a garment for the design of ECG-monitoring clothing for male[J]. Journal of Medical Systems, 2015, 39: 1-14. [12] Winter BB, Webster JG. Driven-right-leg circuit design[J]. IEEE Transactions on Biomedical Engineering, 1983,30: 62-66. [13] Bu Y, Hassan MFU, Lai D. The embedding of flexible conductive silver-coated electrodes into ECG monitoring garment for minimizing motion artefacts[J]. IEEE Sensors Journal, 2020, 21: 14454-14465. [14] Weder M, Hegemann D, Amberg M, et al. Embroidered electrode with silver/titanium coating for long-term ECG monitoring[J]. Sensors, 2015, 15(1): 1750-1759. [15] Lee JW, Yun KS. ECG monitoring garment using conductive carbon paste for reduced motion artifacts[J]. Polymers, 2017, 9(9): 439. [16] Jung HC, Moon JH, Baek DH, et al. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1472-1479.