网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年5月13日 星期二  
文章快速检索
中国生物医学工程学报  2022, Vol. 41 Issue (6): 699-707    DOI: 10.3969/j.issn.0258-8021.2022.06.007
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于动态突触神经网络的菌落图像轮廓提取方法
蔡哲飞, 范影乐*, 武薇
(杭州电子科技大学模式识别与图像处理实验室,杭州 310018)
Contour Extraction Method of Colony Images Based on Dynamic Synaptic Neural Network
Cai Zhefei, Fan Yingle*, Wu Wei
(Laboratory of Pattern Recognition and Image Processing, Hangzhou Dianzi University, Hangzhou 310018, China)
全文: PDF (4449 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 菌落图像轮廓提取的准确性对于微生物菌落形态学和特征分析具有重要意义。本研究构建一种基于动态突触神经网络的菌落图像轮廓提取方法。首先面向视网膜光电转换过程,提出一种基于光照强度的感受野尺度自适应调节模型;其次构建融合了电突触与化学突触侧向调节的带泄漏积分触发(LIF)模型,通过神经元膜电位、空间分布关系以及响应时间差调节电突触和化学突触强度,并获得有无侧向调节作用下的菌落边缘敏感图像;最后比较有无侧向调节作用下神经元响应时间差,利用STDP学习规则对突触权重进行动态更新,以此调整菌落轮廓细节,并将其与初级轮廓响应相结合,得到最终菌落图像轮廓信息。以实验室所采集的40幅菌落图像为研究对象,选取边缘置信度BIdx、平均结构相似度MSSIM,以及综合性能EIdx为评价指标。结果表明,本方法所获取的菌落轮廓更加准确、连续且噪声少,BIdx和MSSIM分别为0.651 4±0.056 5和0.831 8±0.026 1,EIdx为0.765 7±0.027 4,较OS、BAR和LS等3种基于生物视觉的对比方法分别有显著性提升(P<0.01)。所构建的动态突触神经网络适用于菌落等具有丰富细节特征的图像轮廓提取,可为融入生物视觉机制的神经计算模型研究和应用提供一种新思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡哲飞
范影乐
武薇
关键词 菌落识别动态突触轮廓提取神经计算模型    
Abstract:The accuracy of colony image contour extraction is of great significance for microbial colony morphology and feature analysis. Based on the dynamic synaptic neural network, we constructed an image contour extraction method for colonies. Firstly, simulating the photoelectric conversion process of retinal, proposed an adaptive adjustment model of receptive field scale based on light intensity. Secondly, a LIF model combining the lateral regulation of electrical synapse and chemical synapse was constructed. Using neuron membrane potential, spatial distribution relationship and response time difference to adjust the strength of electrical synapse and chemical synapse, the colony edge sensitive image with or without lateral regulation was obtained. Finally, compared the difference of neurons response time with or without lateral regulation, and using STDP rules to dynamically update the weight of neuronal synaptic, so as to adjust the contour details of colony images. The adjusted contour response with the primary contour response were combined to obtain the final contour information of colony images. Taking 40 colony images collected in the laboratory as research objects, and selecting edge confidence BIdx, average reconstructed similarity MSSIM and comprehensive index EIdx as the evaluation indexes. The results showed that the contours obtained by this study was more accurate, continuous and has less noise. BIdx and MSSIM were 0.651 4±0.056 5 and 0.831 8±0.026 1, respectively. Meanwhile, EIdx was 0.765 7±0.027 4, which was significantly higher (P<0.01) than that of biological vision based methods of OS, BAR and LS. The dynamic synaptic neural network constructed in this paper is suitable for image contour extraction with rich detailed features such as colonies and may provide a new way for the research and application of neural computing models that integrate the biological vision mechanism.
Key wordscolony recognition    dynamic synapse    contour extraction    neural computing model
收稿日期: 2021-11-24     
PACS:  R318  
基金资助:国家自然科学基金(61501154)
通讯作者: *E-mail: fan@hdu.edu.cn   
引用本文:   
蔡哲飞, 范影乐, 武薇. 基于动态突触神经网络的菌落图像轮廓提取方法[J]. 中国生物医学工程学报, 2022, 41(6): 699-707.
Cai Zhefei, Fan Yingle, Wu Wei. Contour Extraction Method of Colony Images Based on Dynamic Synaptic Neural Network. Chinese Journal of Biomedical Engineering, 2022, 41(6): 699-707.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2022.06.007     或     http://cjbme.csbme.org/CN/Y2022/V41/I6/699
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发