Neuroimaging Research Progress of Negative Symptoms in Schizophrenia
Gong Jinnan1,2, Yang Zhuoru1, Li Lu1, Jiang Yuchao2, Dong Debo2, Shao Junming3, Yao Dezhong2, Luo Cheng2*
1(School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China) 2(The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China) 3(School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)
Abstract:Patients with chronic schizophrenia have negative symptoms as the main clinical manifestations, which are also the main factor of mental disability, has a great effect on the life quality of patients. So far, the neural mechanism of negative symptoms is still unclear, making it hard to be controlled. This article reviewed the research progress in different aspects in this field, including the occurrence of schizophrenia associated to the damage of subcortical regions (the striatum and thalamus), and the abnormality of the subcortex-cortical connectivity associated to negative symptoms. This article also proposed the perspectives of the new method (reconstruction of topological brain connection) in the study of the mechanism of negative symptoms of schizophrenia, such as exploring the coupling of the dopaminergic neurotransmitter system of the striatum-thalamus-prefrontal loop, and the deconstruction of spatial distribution information. In addition, the application of deep learning can further decode the topological features of the critical brain connections relate to negative symptoms, which is expected to become a potentially approach to explore the mechanism of negative symptoms of schizophrenia.
龚津南, 杨卓儒, 李露, 蒋宇超, 董德波, 邵俊明, 尧德中, 罗程. 基于MRI的精神分裂症阴性症状脑影像研究进展[J]. 中国生物医学工程学报, 2022, 41(1): 108-113.
Gong Jinnan, Yang Zhuoru, Li Lu, Jiang Yuchao, Dong Debo, Shao Junming, Yao Dezhong, Luo Cheng. Neuroimaging Research Progress of Negative Symptoms in Schizophrenia. Chinese Journal of Biomedical Engineering, 2022, 41(1): 108-113.
[1] Yueqin Huang, Yu Wang, Hong Wang, et al. Prevalence of mental disorders in China: A cross-sectional epidemiological study [J]. The Lancet Psychiatry, 2019, 6(3): 211-224. [2] Immonen J, Jääskeläinen E, Korpela H, et al. Age at onset and the outcomes of schizophrenia: A systematic review and meta-analysis [J]. Early Intervention in Psychiatry, 2017, 11(6): 453-460. [3] Delvecchio G, Pigoni A, Perlini C, et al. A diffusion weighted imaging study of basal ganglia in schizophrenia [J]. International Journal of Psychiatry in Clinical Practice, 2018, 22(1): 6-12. [4] Bostan AC, Strick PL. The basal ganglia and the cerebellum: Nodes in an integrated network [J]. Nature Reviews Neuroscience, 2018, 19(6): 338-350. [5] Giraldo-Chica M, Rogers BP, Damon SM, et al. Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia [J]. Biological Psychiatry, 2018, 83(6): 509-517. [6] Gong Jinnan, Luo Cheng, Li Xiangkui, et al. Evaluation of functional connectivity in subdivisions of the thalamus in schizophrenia [J]. The British Journal of Psychiatry, 2019, 214(5): 288-296. [7] Kesby JP, Eyles DW, McGrath JJ, et al, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience [J]. Translational Psychiatry, 2018, 8(1): 30. [8] Sherman SM. Thalamus plays a central role in ongoing cortical functioning [J]. Nature Neuroscience, 2016, 19(4): 533-541. [9] Braff DL, Geyer MA, Light GA, et al. Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia [J]. Schizophrenia Research, 2001, 49(1): 171-178. [10] Gilbert AR, Rosenberg DR, Harenski K, et al. American Psychiatric Publishing, 2001. Thalamic volumes in patients with first-episode schizophrenia [J]. American Journal of Psychiatry, 2001, 158(4): 618-624. [11] Byne W, Buchsbaum MS, Mattiace LA, et al. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia [J]. American Journal of Psychiatry, 2002, 159(1): 59-65. [12] Preuss UW, Zetzsche T, Jäger M, et al. Thalamic volume in first-episode and chronic schizophrenic subjects: A volumetric MRI study [J]. Schizophrenia Research, 2005, 73(1): 91-101. [13] Hazlett EA, Buchsbaum MS, Kemether E, et al. American Psychiatric Publishing, 2004. Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia [J]. American Journal of Psychiatry, 2004, 161(2): 305-314. [14] Romero-Miguel D, Lamanna N, Casquero-Veiga M, et al. Positron emission tomography of the reward system [M]// The Brain Reward System. Berlin: Springer, 2021: 281-305. [15] Nakano K, Kayahara T, Tsutsumi T, et al. Neural circuits and functional organization of the striatum [J]. Journal of Neurology, 2000, 247(5): V1-V15. [16] Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing [J]. Trends in Neurosciences, 1990, 13(7): 266-271. [17] Haber SN. The primate basal ganglia: parallel and integrative networks [J]. Journal of Chemical Neuroanatomy, 2003, 26(4): 317-330. [18] Menegas W, Akiti K, Amo R, et al. Nature Publishing Group, 2018. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli [J]. Nature Neuroscience, 2018, 21(10): 1421-1430. [19] Katthagen T, Kaminski J, Heinz A, et al. Striatal Dopamine and Reward Prediction Error Signaling in Unmedicated Schizophrenia Patients [J]. Schizophrenia Bulletin, 2020, 46(6): 1535-1546. [20] Leroy A, Amad A, D'Hondt F, et al. Reward anticipation in schizophrenia: A coordinate-based meta-analysis [J]. Schizophrenia Research, 2020, 218: 2-6. [21] Ehrlich S, Yendiki A, Greve DN, et al. Cambridge University Press, 2012. Striatal function in relation to negative symptoms in schizophrenia [J]. Psychological Medicine, 2012, 42(2): 267-282. [22] Sorg C, Manoliu A, Neufang S, et al. Oxford Academic, 2013. Increased Intrinsic Brain Activity in the Striatum Reflects Symptom Dimensions in Schizophrenia [J]. Schizophrenia Bulletin, 2013, 39(2): 387-395. [23] Radua J, Schmidt A, Borgwardt S, et al. American Medical Association, 2015. Ventral striatal activation during reward processing in psychosis: A neurofunctional meta-analysis [J]. JAMA Psychiatry, 2015, 72(12): 1243-1251. [24] Okada N, Fukunaga M, Yamashita F, et al. Abnormal asymmetries in subcortical brain volume in schizophrenia [J]. Molecular Psychiatry, 2016, 21(10): 1460-1466. [25] Van Erp TGM, Hibar DP, Rasmussen JM, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium [J]. Molecular Psychiatry, 2016, 21(4): 547-553. [26] Van Den Heuvel MP, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity [J]. Nature Reviews Neuroscience, 2019, 20:435-446. [27] Peichi Tu, Yamei Bai, Chengta Li, et al. Identification of common thalamocortical dysconnectivity in four major psychiatric disorders [J]. Schizophrenia Bulletin, 2018,2018:166. [28] Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions [J]. Schizophrenia Bulletin, 2010, 36(5): 919-934. [29] Strauss GP, Waltz JA, Gold JM. A review of reward processing and motivational impairment in schizophrenia [J]. Schizophrenia Bulletin, 2014, 40(Suppl-2): S107-S116. [30] Marder SR, Galderisi S. The current conceptualization of negative symptoms in schizophrenia [J]. World Psychiatry, 2017, 16(1): 14-24. [31] Welsh RC, Chen AC, Taylor SF. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia [J]. Schizophrenia Bulletin, 2010, 36(4): 713-722. [32] Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia [J]. American Journal of Psychiatry, 2012, 169(10): 1092-1099. [33] Jing Sui, Pearlson GD, Yuhui Du, et al. In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia [J]. Biological Psychiatry, 2015, 78(11): 794-804. [34] Jiang Yuchao, Luo Cheng, Li Xin, et al. Progressive reduction in gray matter in patients with schizophrenia assessed with MR imaging by using causal network analysis [J]. Radiology, 2018, 287(2): 633-642. [35] Draganski B, Kherif F, Klöppel S, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia [J]. Journal of Neuroscience, 2008, 28(28): 7143-7152. [36] Behrens TEJ, Johansen-Berg H, Woolrich MW, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging [J]. Nature Neuroscience, 2003, 6(7): 8. [37] Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition [J]. Trends in Neurosciences, 2007, 30(6): 251-259. [38] Rui Yuan, Xin Di, Taylor PA, et al. Functional topography of the thalamocortical system in human [J]. Brain Structure and Function, 2016, 221(4): 1971-1984. [39] Lambert C, Simon H, Colman J, et al. Defining thalamic nuclei and topographic connectivity gradients in vivo [J]. NeuroImage, 2017, 158: 466-479. [40] O'Rawe JF, Ide JS, Leung HC. Model testing for distinctive functional connectivity gradients with resting-state fMRI data [J]. NeuroImage, 2019, 185: 102-110. [41] Jbabdi S, Sotiropoulos SN, Behrens TE. The topographic connectome [J]. Current Opinion in Neurobiology, 2013, 23(2): 207-215. [42] Wang Xiaojing. Nature Publishing Group, 2020. Macroscopic gradients of synaptic excitation and inhibition in the neocortex [J]. Nature Reviews Neuroscience, 2020, 21(3): 169-178. [43] Dong Debo, Luo Cheng, Guell X, et al. Compression of cerebellar functional gradients in schizophrenia [J]. Schizophrenia Bulletin, 2020, 46(5): 1282-1295. [44] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [45] Bzdok D, Ioannidis JPA. Exploration, inference, and prediction in neuroscience and biomedicine [J]. Trends in Neurosciences, 2019, 42(4): 251-262. [46] Tandon N, Tandon R. Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype [J]. Schizophrenia Research, 2019, 214: 70-75.