网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月6日 星期日  
文章快速检索
中国生物医学工程学报  2021, Vol. 40 Issue (5): 513-520    DOI: 10.3969/j.issn.0258-8021.2021.05.001
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于多参数磁共振影像组学特征的脑垂体瘤质地术前评估方法
万涛1,2, 赵辉1,2, 李德玉1,2, 马军3, 武春雪3, 蒙茗3, 秦曾昌4*
1(北京航空航天大学生物与医学工程学院,北京 100191)
2(北京航空航天大学生物医学工程高精尖创新中心,北京 100191)
3(首都医科大学附属北京天坛医院放射科, 北京 100050)
4(北京航空航天大学自动化科学与电气工程学院,北京 100191)
Preoperative Evaluation of Pituitary Macroadenomas Consistency Using Radiomic Features from Multi-Parametric MRI
Wan Tao1,2, Zhao Hui1,2, Li Deyu1,2, Ma Jun3, Wu Chunxue3, Meng Ming3, Qin Zengchang4*
1(School of Biomedical Science and Medical Engineering, Beihang University, Beijing 100191, China)
2(Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China)
3(Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China)
4(School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)
全文: PDF (3910 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了探究多参数磁共振图像(MP-MRI)特征对脑垂体瘤质地评估的应用价值,提出一种基于影像组学的计算机辅助诊断方法,以期实现术前肿瘤质地的准确判定,从而为手术入路的选择提供影像学依据。对磁共振图像(T1加权、T1加权对比增强、T2加权)的肿瘤区域分别提取6种共296维纹理特征。采用特征选择方法识别重要的影像组学特征,并且使用支持向量机和随机森林两种常用的分类器对垂体瘤质软与质韧进行判别。在84例临床研究样本共计252张MRI图像上,用所述方法进行训练、十折交叉验证及测试。实验结果表明,与单一MRI图像特征相比较,所提出的MP-MRI特征组合能够获得更好的分类效果,分类准确率、敏感性、特异性、AUC分别达到89.80%、90.51%、89.88%、94.08%,表明MP-MRI影像组学特征能够有效准确地识别垂体瘤的软韧质地,有助于垂体瘤疗效和预后的改善。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
万涛
赵辉
李德玉
马军
武春雪
蒙茗
秦曾昌
关键词 影像组学计算机辅助诊断垂体瘤多参数磁共振图像(MP-MRI)术前评估    
Abstract:In order to explore the application value of image characteristics from multi-parameter magnetic resonance imaging (MP-MRI) in evaluating pituitary macroadenoma consistency, this paper presented a radiomics based computer-aided diagnosis method to accurately determine tumor consistency, thus providing an appropriate surgical approach. In this method, 6 types of texture features, a total number of 296, were extracted from tumor regions of MRIs (T1-weighted, T1-weighted contrast enhanced, T2-weighted). A feature selection method was adopted to identify important radiomic features. Two classifiers of support vector machine and random forest were utilized to distinguish soft and hard pituitary macroadenomas. The training, 10-fold cross validation and testing were performed on a total of 252 MRI images in 84 clinical studies. The experiment results showed that the feature combination of MP-MRI achieved better classification performance compared with single MRI protocol with classification accuracy, sensitivity, specificity and area under the curve of 89.80%, 90.51%, 89.88% and 94.08%, respectively. These suggested that MP-MRI features could effectively and accurately discriminate the soft from hard pituitary macroadenomas, which could be useful in improving the efficacy and prognosis of pituitary macroadenomas.
Key wordsradiomics    computer-aided diagnosis    pituitary macroadenomas    multi-parametric magnetic resonance imaging(MP-MRI)    preoperative evaluation
收稿日期: 2020-07-11     
PACS:  R318  
基金资助:国家自然科学基金(61876197,61771325); 北京自然科学基金(7192105)
通讯作者: *E-mail: zcqin@buaa.edu.cn   
引用本文:   
万涛, 赵辉, 李德玉, 马军, 武春雪, 蒙茗, 秦曾昌. 基于多参数磁共振影像组学特征的脑垂体瘤质地术前评估方法[J]. 中国生物医学工程学报, 2021, 40(5): 513-520.
Wan Tao, Zhao Hui, Li Deyu, Ma Jun, Wu Chunxue, Meng Ming, Qin Zengchang. Preoperative Evaluation of Pituitary Macroadenomas Consistency Using Radiomic Features from Multi-Parametric MRI. Chinese Journal of Biomedical Engineering, 2021, 40(5): 513-520.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2021.05.001     或     http://cjbme.csbme.org/CN/Y2021/V40/I5/513
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发