|
|
人工心瓣用热解炭断裂韧性研究及断口形貌分析 |
张建辉*, 阮叶鹏, 孙振国 |
(杭州电子科技大学机械工程学院,杭州 310018) |
|
Fracture Toughness and Fractography of Pyrolytic Carbon for Artificial Heart Valve |
Zhang Jianhui*, Ruan Yepeng, Sun Zhenguo |
(School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China) |
|
摘要 人工心瓣中常用材料主要是包覆在石墨基体上的热解炭。为研究人工心瓣用热解炭材料断裂韧性,采用MTS电动力学测试系统,对石墨、纯热解炭及不同厚度热解炭包覆石墨复合材料4种DC(T)圆盘样品进行紧凑拉伸实验,利用实验所得数据绘制载荷-位移(P-V)曲线,根据ASTM标准E399规定的方法确定临界载荷值以及计算断裂韧性值,并对样品断口形貌进行显微观察。结果表明:两种热解炭包覆石墨复合材料断裂韧性值大于纯热解炭以及石墨的相应值,石墨断裂韧性值大于纯热解炭断裂韧性值;在热解炭包覆石墨复合材料中,涂层与基体厚度比值大的对应断裂韧性值反而小;显微观察热解炭断口较为平整,石墨断口较为粗糙,且热解炭及石墨在裂纹扩展区以及过载断裂区的断口形貌基本上是一致的。
|
|
关键词 :
人工心瓣,
热解炭,
临界载荷,
断裂韧性,
断口形貌
|
Key words:
artificial heart valve
pyrolytic carbon
critical load
fracture-toughness
fractography
|
收稿日期: 2019-07-19
|
|
基金资助:浙江省重大科技专项(2015C01035) |
通讯作者:
E-mail: zhangjh@hdu.edu.cn
|
[1] 张建辉,王根明. 人工机械心脏瓣膜用热解炭 [M]. 北京:科学出版社, 2016: 24-25. [2] Lou HF, Chen RK, Xu SW, et al. Observations on durability of a pyrolytic carbon bileaflet mechanical heart valve [J]. Chinese Journal of Biomedical Engineering (English Edition), 2010, 19 (3): 109-113. [3] Gott VL, Alejo DE, Cameron DE. Mechanical heart valves: 50 years of evolution [J]. The Annals of Thoracic Surgery, 2003, 6 (6): 2230-2239. [4] Kostrzewa B, Rybak Z. History, present and future of biomaterials used for artificial heart valves [J]. Polimery W Medycynie, 2013, 43 (3): 183-189. [5] Qian JY, Gao ZX, Hou CW, et al. A comprehensive review of cavitation in valves: mechanical heart valves and control valves[J]. Bio-Design and Manufacturing, 2019, 2 (2): 119-136. [6] Ritchie RO, Dauskardt RH. Pyrolytic Carbon Coatings [J]. An Introduction to Bioceramics, 2013, 2: 367-388. [7] 张建辉,邢兴. 人工心瓣热解炭断裂韧性有限元分析 [J]. 中国生物医学工程学报, 2012, 31 (6): 889-894. [8] 张建辉,郑艳真. 化学气相沉积低温各向同性热解炭微观结构及沉积机制 [J]. 复合材料学报, 2016, 33 (8): 1812-1818. [9] 殷腾,蒋炳炎,苏哲安,等. 载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究 [J]. 新型炭材料, 2018, 33 (4): 357-363. [10] 李克智,和永岗,李贺军,等. 化学气相沉积低温热解炭的微观组织结构与沉积模型 [J]. 新型炭材料, 2012, 27 (2): 81-86. [11] Ritchie RO, Dauskardt RH, Yu WK. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications [J]. Biomed Mater Res, 1990, 24 (1): 189-204. [12] Dauskardt RH, Ritchie RO, Takernoto JK, et al. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: Role of small cracks in life prediction [J]. Journal of Biomedical Materials Research, 1993, 28 (6): 229-236. [13] Kruzic JJ, Kuskowski SJ, Ritchie RO. Simple and accurate fracture toughness testing methods for pyrolytic carbon graphite composites used in heart-valve prostheses [J]. Journal of Biomedical Materials Research A, 2005, 74 (3): 461-464. [14] Kwiecinska BK, Pusz S. Pyrolytic carbon — Definition, classification and occurrence [J]. International Journal of Coal Geology, 2016, 163 (1): 1-7. [15] 张建辉,宋银超,夏文莉. 低温各向同性热解炭性能和结构变化 [J]. 中国生物医学工程学报, 2015, 34 (5): 634-639. [16] 程靳,赵树山. 断裂力学 [M]. 北京:科学出版社, 2006: 194-200. [17] Cao Hengchu. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications [J]. Heart Valve Disease, 1996, 5(1): 32-49. [18] Xia Lihong, Huang Boyun, Zhang Fuqin, et al. Effect of heat treatment on cracking and strength of carbon/carbon composites with smooth laminar pyrocarbon matrix [J]. Materials & Design, 2016, 107 (1): 33-40. [19] 臧启山,姚戈,编著. 工程断裂力学简明教程 [M]. 合肥:中国科学技术大学出版社, 2014: 51-56. [20] Nejad RM, Shariati M, Farhangdoost K. Prediction of fatigue crack propagation and fractography of rail steel [J]. Theoretical and Applied Fracture Mechanics, 2019,101: 320-331. [21] Morrell R, Mingard K, Zunega J. Fractography of hardmetal dies used for the manufacture of polycrystalline diamond [J]. Journal of the European Ceramic Society, 2017, 37 (14): 4259-4264. [22] Scherrer SS, Lohbauer U, Della BA. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials [J]. Dental Materials, 2017, 33 (6): 599-620. [23] Karthik G, John JM. Quantitative fractography of mixed mode fracture in glass and ceramics [J]. Journal of the European Ceramic Society, 2014, 34 (14): 3247-3254. |
|
|
|