Abstract:The optic disc (OD) is considered as one of the main features of a retinal image. OD detection is a main step in developing automated analysis systems for the retinopathy. In this paper, we proposed a method aiming to effectively extract the local brightness areas in digital retinal fundus images based on directional local contrast (DLC) filter. The right OD region of interest (ROI) was selected by considering its local vessels features. Thereupon, in the selected ROI, the OD contour was exactly detected using the mathematical morphology method and regionbased active contour model technique. The evaluation for the proposed method was performed using the dataset of 81 images from the public STARE project, containing images from both normal (31) and pathological (50) subjects, even including severe pathological situations. The OD position was correctly identified in 73 out of 81 images, the accuracy rate is about 90.1%. These results demonstrate that the method effectively overcomes the influence from the large bright spot lesions on OD detection by just extracting the large vessels and less computation time.
[1]AbdelRazik Youssif AAH, Ghalwash AZ, AbdelRahman Ghoneim AAS. Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter [J]. IEEE Trans Med Imaging, 2008, 27(1): 11-18.
[2]朱琳琳, 唐延东. 基于眼底特征的视盘自动检测 [J]. 仪器仪表学报, 2010, 31(8): 118-122.
[3]Qureshi RJ, Kovacs L, Harangi B, et al. Combining algorithms for automatic detection of optic disc and macula in fundus images [J]. Computer Vision and Image Understanding, 2012, 116(1): 138-145.
[4]Sinthanayothin C, Boyce JF, Cook HL, et al. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images [J]. British Journal of Ophthalmology, 1999, 83(8): 902-910.
[5]Walter T, Klein JC. Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques [M] //Medical Data Analysis. BerLin: Springer Berlin Heidelberg, 2001: 282-287.
[6]Li Huihua, Chutatape O. Automatic location of optic disk in retinal images [C] //Proceedings of International Conference on Image Processing. Thessaloniki: IEEE, 2001, 2: 837-840.
[7]Lalonde M, Beaulieu M, Gagnon L. Fast and robust optic disc detection using pyramidal decomposition and Hausdorffbased template matching [J]. IEEE Trans Med Imaging, 2001, 20(11): 1193-1200.
[8]Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels [J]. IEEE Trans Med Imaging, 2003, 22(8): 951-958.
[9]Foracchia M, Grisan E, Ruggeri A. Detection of optic disc in retinal images by means of a geometrical model of vessel structure [J]. IEEE Trans Med Imaging, 2004, 23(10): 1189-1195.
[10]Niemeijer M, Abràmoff MD, van Ginneken B. Fast detection of the optic disc and fovea in color fundus photographs [J]. Medical image analysis, 2009, 13(6): 859-870.
[11]Welfer D, Scharcanski J, Kitamura CM, et al. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach [J]. Computers in Biology and Medicine, 2010, 40(2): 124-137.
[12]Goldbaum M. The STARE (STructured Analysis of the Retina) Project [DB/OL]. http://www.parl.clemson.edu/~ahoover/stare, 2013-01/2013-09-24.
[13]Zhang Ming, Liu J C. Directional local contrast based blood vessel detection in retinal images [C] //IEEE International Conference on Image Processing. San Antonio: IEEE, 2007, 4: IV-317-IV-320.
[14]Otsu N. A threshold selection method from gray level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, SMC-9(1): 62-66.
[15]Fleming AD, Philip S, Goatman KA, et al. Automated microaneurysm detection using local contrast normalization and local vessel detection [J]. IEEE Trans Med Imaging, 2006, 25(9): 1223-1232.
[16]Chan TF, Vese LA. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
[17]Osareh A, Mirmehdi M, Thomas B, et al. Comparison of colour spaces for optic disc localisation in retinal images [C] //Proceedings of 16th International Conference on Pattern Recognition. Quebec: IEEE, 2002, 1: 743-746.
[18]ter Haar F. Automatic localization of the optic disc in digital colour images of the human retina [D]. Utrecht: Utrecht University, 2005.
[19]夏伟, 王利, 李蓬秋, 等. 应用免散瞳眼底照相技术筛查糖尿病视网膜病变临床分析[J]. 国际眼科杂志(中文刊), 2013, 13(11): 2267-2269.
[20]B. van Ginneken. The DRIVE (Digital Retinal Images for Vessel Extraction) database [DB/OL]. http://www.isi.uu.nl/Research/ Databases/DRIVE, 2007-04/2013-09-24.